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With the rapid development of high-throughput sequencing
technology, omics data that are available as genomics, transcrip-
tomics, proteomics and metabolomics, have been widely used
to study the underlying mechanisms of important biological
processes. In recent times, multi-omics data integration has
attracted extensive attention in the field of medicine and biology,
such as conceptual introduction of multi-omics [1–4], multi-
omics data processing techniques [5–8], and disease treatment
and prevention [5, 9]. Compared with a single omics, multi-omics
data can provide more comprehensive and extensive informa-
tion, thus integrated analysis of multi-omics data can verify
and help to complement each other, which can help us identify
better biomarkers for high-precision diagnosis, prognosis and
predictive treatment.

In the era of big biological data and precision medicine, we
organized this Special Issue of Briefings in Functional Genomics
on the computational analysis of multi-omics data aiming
at bringing researchers together to disseminate their novel
techniques for analysis of multiple omics data while exploring
the significance from big biomedical data analysis for complex
pathological conditions.

Five articles focus on the analysis methods and techniques of
multi-omics data and integrative analysis for complex diseases,
such as human brain disorders, cancer and virus infection.
The article by Augustyn et al. [10] presents the application of
Cloud computing in integrative analysis of multi-omics data,
which can be as solutions for scaling and building independent
analysis pipelines for omics data. A verified concept model
that exhibits the potentials for performing integrative analysis
of multiple omics data sources is introduced as a universal
solution. The article by Wang [11] summarizes the general
principles and approaches to dissect the regulatory mechanisms
of post-transcriptional processes by integrating multi-omics
data. The studies of post-transcriptional processing of RNAs
based on integrative analyses of multiple omics data, such
as RNA binding proteins, epigenomic data and ribosome
profiling (ribo-seq) data, are introduced. In the article by Kaur
et al. [12], various of computational resources and tools for
identifying cancer biomarkers based on multiple omics data
are summarized. The computational resources and tools are
divided into several categories, including cancer-associated
multi-omics data repositories, visualization or analysis tools and
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algorithms for omics data, machine learning-based diagnostic,
prognostic, and predictive biomarker tools. Various algorithms
for the identification of cancer biomarkers are also listed, such
as algorithm based on machine learning, deep learning, and
survival analysis algorithms. The article by Dong et al. [13]
reviews the recent research of human brain disorders by using
multi-omics data resources, including schizophrenia, autism,
bipolar disorder, Alzheimer’s disease, Parkinson’s disease,
progressive supranuclear palsy, etc. Single-cell omics data in
recent brain research are also mentioned, such as single-nucleus
RNA-seq, single-cell ATAC-seq and spatial transcriptomics.
The limitations of the multi-omics study about human brain
disorders, such as high-dimension reduction challenge, and
harmonization and heterogeneity of the omics data source,
are also discussed. The article by Wang et al. [14] propose the
strategy of ‘precision omics’, i.e. the combinatorial strategy
of omics technologies and precision medicine, and illustrate
how large-scale molecular omics data can be performed with
the support of interoperable ontologies for disease treatment
and prevention. In the article, interoperable ontology-supported
precision COVID-19 omics studies are illustrated to explain the
proposed precision omics ontology hypothesis, assuming that
the effectiveness of precision omics is positively correlated with
the interoperability of ontologies.

Two articles focus on the prediction of gene function
or biomolecule-disease associations by using network-based
computational methods or machine learning methods. In the
article by Chen et al. [15], the network technologies used for
gene functional prediction are investigated, and the multi-data
source fusion is proved to be an effective manner to improve
gene function prediction. The network-based gene function
prediction methods are classified into four types, namely
neighborhood-based method, kernel function-based method,
random walk technology-based method and matrix decompo-
sition technology-based method. Advantages of network-based
method for gene function prediction are elaborated from several
aspects. The article by Ding et al. [16] presents machine learning
approaches for predicting associations between biomolecules
(such as microRNAs, circRNAs, lncRNAs and genes) and diseases.
It mainly introduces three parts: data sources for prediction
models, feature representation methods for machine learning-
based prediction models, and machine learning algorithms for
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biomolecule-disease association prediction. Eight feature repre-
sentation methods are summarized, including one hot encoding,
autoencoder representation, node2vec representation, graph
representation, manifold learning representation, etc. Three cat-
egories of machine learning-based prediction methods are sum-
marized, namely, basic machine learning prediction methods,
matrix completion-based methods, and deep learning-based
methods. Moreover, advantages and disadvantages of these
categories of prediction methods are discussed. Suggestions
such as the multiple data source integration strategies are also
provided.

The article by Hasan et al. [17] evaluates the web applica-
tions for DNA N6-methyladenosine (6 mA) site prediction. Eleven
6 mA prediction web available tools are assessed on seven dif-
ferent species-specific datasets. Furthermore, advantages and
disadvantages of the web-based 6 mA site prediction tools are
discussed, and it shows that no universal best web tools are
available for all genomes, especially for three species, namely,
Diospyros lotus, Caenorhabditis elegans and Escherichia coli.

The development of data integration in omics needs to
be fully advanced in experimental science, analytical science,
biomedicine, mathematics, and computer science. In particular,
more powerful analytical calculation methods are needed. The
effective integration of multi-layered omics data by calculating
sails can help us to comprehensively interpret biological
systems. We hope that our Special Section can generate
interest from researchers and trigger more valuable research
results. Finally, we wish to thank all of the authors for their
contributions, the scientific communities for peer reviewing,
and the staff at the Briefings in Functional Genomics editorial
office for their work on this Special Issue.
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