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Abstract: Background: Lung adenocarcinoma (LADC) is the most common type of lung cancer
and is a subtype of non-small-cell lung cancer (NSCLC). Approximately 40% of LADC patients ex-
perience brain metastases (BMs) during the course of the disease. In this study, integrated bioinfor-
matics methods were applied to identify key genes related to brain metastasis in lung adenocarcino-
ma.

Methods: We derived and characterized genes differentially expressed between the primary tu-
mour and brain metastases using tumour cells isolated from two lung cancer Patient-derived xeno-
grafts (PDX) cases (GSE 69405). Gene ontology (GO) and KEGG pathway enrichment analyses
were applied, and protein-protein interaction (PPI) networks and Cytoscape software were utilized
to identify key genes.

Results: Four key genes, including CKAP4 (Cytoskeleton Associated Protein 4), SERPINA1 (Ser-
pin Family A Member 1), SDC2 (Syndecan 2) and GNG11 (G Protein Subunit Gamma 11) were
identified for BM-LADC by the Venn diagram.

Conclusion: We believe these key genes may be potential biomarkers for improved prognosis and
treatment of lung adenocarcinoma.

Keywords: Lung adenocarcinoma, brain metastases, single-cell RNA sequencing, bioinformatics, key genes, biomarker.

1. INTRODUCTION
Lung adenocarcinoma (LADC) is the most common type

of lung cancer and type of non-small-cell lung cancer (NS-
CLC) [1]. Approximately 40% of LADC patients experience
brain metastases (BMs) during the course of the disease [2,
3]. There are few treatment options for BM-LADC, mainly
including  surgery  and  radiosurgery  [4].  Moreover,  these
treatments are usually ineffective, leading to a low survival
rate  [5].  Therefore,  there  is  an urgent  need to  uncover  the
key genes and signalling pathways to reduce BM by early di-
agnosis.

Intensive studies have focused on understanding the com-
plex process of BM-LADC [6-9]. Shih et al. confirmed that
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overexpression of MYC, YAP1 and MMP13 can increase the
incidence of brain metastasis [5]. Pocha et al. defined a sub-
type of brain metastasis from lung adenocarcinoma with the
expression of SFTPA1, SFTPB and NAPSA [10]. However,
the  transition  mechanisms  between  primary  tumours  and
brain metastases are still not quite clear. Biomarkers for iden-
tifying “premetastatic” lesions would be useful in diagnos-
ing BM and providing actionable targets  [11].  In the past,
RNA  sequencing  has  mostly  been  conducted  in  tissue,
which is also known as bulk-seq [12]. Due to the complex tu-
mour  microenvironment,  sequencing  the  average  gene  ex-
pression only in tissue is not sufficient for understanding the
disease [13, 14].

Single-cell  RNA sequencing (scRNA-seq),  a relatively
new technique, has been widely used to identify therapeutic
targets and biomarkers in many diseases [15-26]. Unlike tra-
ditional  bulk  RNA  sequencing,  scRNA-seq  quantifies  the
gene expression for each single cell [27, 28]; consequently,
scRNA-seq is especially useful to uncover complex tumour
tissues that contain cells of different types and cancer stages
[29-32]. Similarly, scRNA-seq could also uncover the trajec-
tory of dynamic changes in cell state [33], and hence is of

1875-5631/21 $65.00+.00 © 2021  Bentham Science Publishers

Send Orders for Reprints to reprints@benthamscience.net
338

Current Gene Therapy, 2021, 21, 338-348

RESEARCH ARTICLE

Single-cell RNA Sequencing Analysis Identifies Key Genes in Brain Metas-
tasis from Lung Adenocarcinoma

http://crossmark.crossref.org/dialog/?doi=10.2174/1566523221666210319104752&domain=pdf


Single-cell RNA Sequencing Analysis Identifies Key Genes in Brain Metastasis Current Gene Therapy, 2021, Vol. 21, No. 4   339

great  use  to  identify  key  genes  in  tumour  metastasis  [34,
35].

In this study, integrated bioinformatics methods were ap-
plied to identify key genes in brain metastases from lung ade-
nocarcinoma. We derived and characterized genes differen-
tially expressed between the primary tumour and brain me-
tastasis  using  tumour  cells  isolated  from  two  lung  cancer
PDX  cases  (GSE  69405)  [36].  Gene  ontology  (GO)  and
KEGG pathway enrichment analyses were applied, and pro-
tein-protein interaction (PPI) networks and Cytoscape soft-
ware were utilized to identify key genes [37-42]. Four key
genes, CKAP4, SERPINA1, SDC2, and GNG11, were identi-
fied for BM-LADC by Venn diagram. We believe these key
genes may be potential biomarkers for better prognosis and
treatment of lung adenocarcinoma.

2. MATERIALS AND METHODS

2.1. Acquisition of LADC Cell Samples
We obtained LADC cell samples from the publicly acces-

sible Gene Expression Omnibus (GEO) database by down-
loading the transcriptome profile  from GSE69405.  An ex-
pression matrix consisting of 128 cancer cells was obtained
by combining tumour cell-enriched PDX cells (LC-PT-45),
an additional PDX cell batch (LC-PT-45) and another lung
cancer brain metastasis PDX case (LC-MBT-15).

2.2. Processing scRNA-seq Data
We  chose  the  popular  single-cell  analysis  tool  Seurat

package to process the data [43]. Following the standard pro-
cess of Seurat, low-quality single cells were first filtered us-
ing a number of detected genes and percentage of mitochon-
dria  sequencing  count.  In  this  case,  cells  with  fewer  than
6,000 detected genes and a percentage of mitochondria se-
quencing count higher than 35% were excluded as low-quali-
ty cells. In addition, we followed the standard Seurat pipe-
line and calculated the most variable genes. Then, linear di-
mension reduction PCA and nonlinear dimension reduction
method t-SNE were utilized, and both visualization results
showed two separate clusters, indicating that significant dif-
ferences existed between the primary tumour cells and brain
metastasis tumour cells. Afterward, the top 500 differential-
ly expressed genes between these two clusters were identi-
fied as marker genes.

2.3. Enrichment Analysis
Gene  Ontology  (GO)  annotations  and  KEGG pathway

analysis were performed using the R package clusterProfiler
(version 3.16.1) [44-46]. GO terms were divided into three
groups: biological processed (BP), cellular components (C-
C) and molecular functions (MF) [47]. KEGG pathway en-
richment analysis was also carried out using the R package
clusterProfiler (version 3.16.1). Group p-values were set to
lower  than  0.05,  and  the  miminum  size  of  genes  in  each
group was set  to 10.  For the enrichment of hub genes,  we
chose the DAVID (Database for Annotation, Visualization,
and Integrated Discovery) database [48].

2.4. PPI Network Analysis
The  STRING  database  (Version  11.0)  was  utilized  to

evaluate  interactions  between  proteins  (https://string-
db.org/) using the top 500 DEGs [49]. We screened impor-
tant  interactions  by  considering  a  combined  constructed
score lower than 0.9 to be significant. The PPI results were
downloaded and further analysed using Cytoscape (version
3.7.2) software [50].

A  Cytoscape  plug-in,  “Molecular  Complex  Detection”
(MCODE) [51], was utilized to screen significant PPI net-
work modules. The parameters were set with a degree cut-
off of 2, node score cut-off of 0.2, k-core of 2, and a maxi-
mum depth of 100. Another Cytoscape plug-in, Cytohubba
[52] was used to find the hub genes in the PPI network. The
maximal clique size (MCC) was used to calculate the top 10
nodes, which represent the most significant hub genes.

2.5. Identification of Key Biomarkers
A  Venn  diagram  was  used  to  identify  key  biomarkers

among  “significant  genes  identified  by  PPI  degree”,  “hub
genes identified by Cytohubba,” and “hub genes identified
by MCODE”. The Venn diagram was drawn using the web-
site  (http://bioinformatics.psb.ugent.be/webtools/Venn/).
Functions  for  the  four  identified  key  genes  were  obtained
via GeneCards (https://www.genecards.org/) [53].

3. RESULTS

3.1. scRNA-seq Data Profiling
We acquired 126 high-quality cells from LADC patients;

among them, 77 cells  were isolated in  PDM from the pri-
mary tumour (pt),  whereas  49 cells  were isolated in  PDM
from brain  metastasis  tumours  (mbt).  All  gene  expression
values downloaded from GEO (Gene Expression Omnibus)
of these 126 cells were combined into a matrix. Quality con-
trol  is  shown  in  Fig.  (1A),  which  illustrates  the  detected
genes for each cell, the library size for each cell, and the per-
cent of mitochondria counts for each cell. Based on the re-
sults in Fig. (1A), we excluded cells with detected genes <
6000 and mitochondrial counts > 35%, resulting in 120 cells
remaining. Fig. (1B) shows a positive correlation (Pearson’s
r = 0.29) between library size and detected genes. Fig. (1C)
illustrates the highly differentially expressed genes (DEGs)
across all 120 cells, and the top 10 significantly DEGs were
SAA1, LAN2, HIST1H4C, SAA2, CD44, SAT1, GSTP1, IL8,
ASPH, and EREG (Table 1). Principal component analysis
(PCA) was used to visualize these cells, and the results are
shown in Fig. (1D) prove that the gene expression levels of
PT cells and MBT cells are significantly different in two se-
parate clusters. In addition, standard deviations of the princi-
pal components were calculated, as shown in Fig. (1E), and
the elbow indicated that the first 20 dimensions of the princi-
pal components were sufficient for further analysis.  t-Dis-
tributed stochastic neighbour embedding (t-SNE) was then
conducted  to  verify  the  visualization  results  of  PCA (Fig.
1F). As expected, pt and mbt cells were clustered into two
groups. Accordingly, we performed differential analysis and
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displayed  the  top  20  significantly  differentially  expressed
genes via a heatmap (Fig. 1G). We then characterized the tra-
jectory of the 120 single cells (Fig. 1H) and showed a signifi-

cant  tendency  curve  from  the  primary  tumour  (pt)  to  the
brain metastasis tumour (mbt), indicating the possibility of
uncovering key genes in the BM-LADC process.

Fig. (1). Processing single-cell RNA sequencing data. (A) Quality control of scRNA-seq data. We filtered out low-quality cells by detected
gene count, library size and percentage of mitochondrial genes. After filtering, 120 single cells were obtained for further analysis. (B) Pear-
son’s correlation (r = 0.29) between detected genes and library sizes. (C) Volcano plot assessment of differentially expressed genes. Red dots
indicate highly variable genes between pt cells and mbt cells. (D) Linear dimension reduction technique Principal component analysis (PCA)
was applied to scRNA-seq data, and the results showed that bt cells and mbt cells were grouped into separate clusters. (E) Principle compo-
nents were ranked based on the percentage of variance explained by each principal component (elbow plot). (F) The nonlinear dimension re-
duction method t-distributed stochastic neighbour embedding (t-SNE) was applied to scRNA-seq data. (G) A heatmap was constructed using
the top 10 significant marker genes between pt cells and mbt cells. (H) Trajectory analysis revealed a significant tendency curve from the pri-
mary tumour (pt) to the brain metastasis tumour (mbt), indicating the possibility of uncovering key genes in the BM-LADC process. (A high-
er resolution / colour version of this figure is available in the electronic copy of the article).
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Table 1. Screening DEGs in mbt cells.

DEGs Official Gene Symbol
Upregulated DSCR8, GNAT3, COX7B2, AC006050.2, SSX5, EDIL3, GTSF1, SNRPN, MAGEC2, TEX41

Downregulated XAGE1D, KRT19, XAGE1B, XAGE1E, ST3GAL1, CD44, S100A16, AXL, CEACAM6, CD163L1
Abbreviations are as follows: DEGs, differentially expressed genes.

Fig. (2). Enrichment results of differentially expressed genes. (A) Heatmap displaying the top 500 differentially expressed genes (DEGs)
per cluster. (B) Dot plot using the top 500 DEGs depicting the top 5 terms of GO enrichment in three categories, namely, BP, CC and MF.
(C) Dot plot showing the top 5 significantly enriched KEGG pathways using the top 500 DEGs. (A higher resolution / colour version of this
figure is available in the electronic copy of the article).
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Fig. (3). PPI networks and VENN diagram. (A) The overall view of the PPI network constructed using the top 500 DEGs between primary
LADC cells and brain metastasis tumour cells. (B) Hub genes identified by Cytohubba. (C) and (D) Hub genes identified by MCODE. (E)
Venn diagram identifying key genes by finding the common genes identified by degree, CytoHubba, and MCODE. (A higher resolution /
colour version of this figure is available in the electronic copy of the article).

3.2. Enrichment Analysis
With the DEGs obtained from scRNA-seq analysis, (Fig.

2A)  functional  annotation  was  carried  out.  The  GO terms
were divided into three categories, namely, biological pro-
cessed (BP), cellular components (CC), and molecular func-
tions (MF). The results are shown in Fig. (2B). For BP, the
top  5  enriched  GO  terms  were  multicellular  organismal
homeostasis, extracellular matrix organization, extracellular
structure organization, regulation of peptidase activity and
negative regulation of endopeptidase activity. The GO-CC
terms were mainly enriched in collagen-containing extracel-
lular matrix, cell-substrate junction, platelet alpha granule,
fibrillar collagen trimer and banded collagen fibril. The most
enriched GO-MF terms were enzyme inhibitor activity, pep-
tidase regulator activity, extracellular matrix structural con-
stituent, endopeptidase inhibitor activity and serine-type en-
dopeptidase inhibitor activity.

The  most  significantly  enriched  KEGG  pathways  are
shown in Fig. (2C). The significant KEGG pathways includ-
ed proteoglycans in cancer, fluid shear stress and atheroscle-
rosis,  chemical  carcinogenesis,  metabolism of  xenobiotics

by  cytochrome  P450,  and  drug  metabolism-cytochrome
P450  (Fig.  2).

3.3. Protein-Protein Interaction (PPI) Network Analysis
We obtained 285 nodes and 571 protein pairs from the

STRING database  by  setting  combined score  to  be  higher
than 0.9 (Fig. 3A). We identified interaction degrees higher
than  15  as  hub  genes,  which  were  GNG11  (degree  =  19),
HGF (degree = 17), SERPINA1 (degree = 17), GGH (degree
= 17), SDC2  (degree = 17), ORM1  (degree = 16) and CK-
AP4 (degree = 16).

Afterward,  we  used  Cytohubba  to  identify  hub  genes,
and the results are shown in Fig. (3B). The most significant
hub genes revealed by Cytohubba were SERPINA1, CKAP4,
SDC2, SPP1, SERPIND1, CP, PRSS23, SPARCL1, IGFBP3
and GNG11.

In addition, MCODE was also utilized for screening hub
genes. The most significant modules are shown in Fig. (3C
and D). In Fig. (3C), 16 nodes and 65 edges were identified
with an MCODE score of 8.677, and in Fig. (3D), 17 nodes
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and  67  edges  were  identified  with  an  MCODE  score  of
9.375  (Fig.  3).

3.4. Identifying Key Genes for Metastasis
The  Venn  diagram in  Fig.  (3E)  shows  four  key  genes

among  “significant  genes  identified  by  PPI  degree”,  “hub
genes identified by Cytohubba” and “hub genes identified

by  MCODE”,  including  CKAP4,  SERPINA1,  SDC2  and
GNG11.  A  summary  of  these  four  key  genes  is  shown  in
Table 2. The details of the Venn diagram are shown in Table
3. The gene expression of these four key genes is shown in
(Fig.  4).  The  results  showed  that  CKAP4  and  SERPINA1
were  downregulated  in  metastatic  cells,  while  SDC2  and
GNG11 were upregulated in metastatic cells (Fig. 4B-E).

Fig. (4). Gene expression of four key genes identified in this study. (A) The nonlinear dimension reduction method t-distributed stochastic
neighbour embedding (t-SNE) was applied to scRNA-seq data. Red dots represent primary cells, and blue dots represent metastatic cells. (B)
Gene expression of key gene CKAP4. (C) Gene expression of key gene SERPINA1. (D) Gene expression of key gene SDC2. (E) Gene expres-
sion of key gene GNG11. (A higher resolution / colour version of this figure is available in the electronic copy of the article).
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Table 2. Summary of four key genes.

Gene Sym-
bols

Full Names Functions

CKAP4 Cytoskeleton Associated

Protein 4

Mediates the anchoring of the endoplasmic reticulum to microtubules. High-affinity epithelial cell surface receptor

for the FZD8-related low molecular weight sialoglycopeptide APF/antiproliferative factor. Mediates the APF an-

tiproliferative signalling within cells.

SERPINA1 Serpin Family A Member

1

Inhibitor of serine proteases. Its primary target is elastase, but it also has a moderate affinity for plasmin and throm-

bin. Irreversibly inhibits trypsin, chymotrypsin and plasminogen activator. The aberrant form inhibits insulin-in-

duced NO synthesis in platelets, decreases coagulation time and has proteolytic activity against insulin and plas-

min.

SDC2 Syndecan 2 Cell surface proteoglycan that bears heparan sulfate. Regulates dendritic arbor morphogenesis.

GNG11 G Protein Subunit

Gamma 11

Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmem-

brane signalling systems. The beta and gamma chains are required for the GTPase activity, for replacement of

GDP by GTP, and for G protein-effector interaction.

Table 3. The VENN diagram results.

Names Total Elements
Cytohubba, MCODE, Degree 4 GNG11, CKAP4, SERPINA1, SDC2

MCODE, Degree 2 HGF, ORM1
Cytohubba, MCODE 6 SPARCL1, CP, SERPIND1, SPP1, IGFBP3, PRSS23

Degree 1 GGH

MCODE 21
SERPINE1, F8, MC4R, AGT, RAMP1, CYSLTR2, F2RL1, CNR1, EDN1, ADORA2B, SRGN, ADRB2, GNAI1, LPAR2,

A2M, PTHLH, GAL, SAA1, PCYOX1L, GNAT3, VIPR1

4. DISCUSSION
Lung cancer is the leading cause of cancer deaths, and

lung adenocarcinoma is  the main type of  lung cancer  (ap-
proximately 50%-55%). As the aetiology and pathogenesis
of brain metastasis of lung adenocarcinoma are unclear, we
designed this study to reveal the key biomarkers of this pro-
cess.  The results  of this work present new insight into the
biomarkers of brain metastasis of lung adenocarcinoma.

In the present study, single-cell RNA-seq data were util-
ized  to  identify  DEGs between  primary  lung  tumours  and
brain  metastasis  of  lung  adenocarcinoma.  Then,  GO  and
KEGG enrichment analyses were conducted to reveal func-
tional biological pathways related to brain metastasis. Subse-
quently,  four  key  genes,  CKAP4,  SERPINA1,  SDC2  and
GNG11, were identified by Venn diagram by selecting the
common genes among “significant genes identified by PPI
degree”,  “hub  genes  identified  by  CytoHubba”  and  “hub
genes identified by MCODE”.

CKAP4 (Cytoskeleton Associated Protein 4) is a protein--
coding gene that mediates the anchoring of the endoplasmic
reticulum  to  microtubules  and  is  a  high-affinity  epithelial
cell  surface  receptor  for  the  FZD8-related  low  molecular
weight sialoglycopeptide APF/antiproliferative factor. It me-
diates APF antiproliferative signalling within cells. Yanagita
et at. identified CKAP4 as a novel early serodiagnostic mark-
er for lung cancer [54]. Bhavanasi et al. identified CKAP4
as a receptor for Dickkopf that suppressed tumorigenesis in
cancer cells [55]. Li et al. found that CKAP4 inhibited the
metastasis of hepatocellular carcinoma by suppressing the ac-
tivation  of  epithelial  growth  factor  receptor  (EGFR)  sig-
nalling [56]. Li et al. pointed out that CKAP4 may serve as a

key biomarker of intrahepatic cholangiocellular carcinoma
and is significantly associated with distant metastasis [57].
From the above results, the function of CKAP4 in lung can-
cer cells is complex, and many studies have shown metasta-
sis in other types of cancers. The function of CKAP4 in the
metastasis of lung cancer requires further study.

SERPINA1 (Serpin Family A Member 1) is a protein-cod-
ing gene that serves as an inhibitor of serine proteases. Its
primary target is elastase, but it also has a moderate affinity
for  plasmin and thrombin.  SERPINA1  irreversibly  inhibits
trypsin, chymotrypsin and plasminogen activator. The aber-
rant form inhibits insulin-induced NO synthesis in platelets,
decreases  coagulation  time  and  has  proteolytic  activity
against insulin and plasmin. Ercetin et al. found that the SER-
PINA1  gene plays a significant role in the pathogenesis of
lung cancer by influencing cancer cell migration and colony
formation [58]. Kwon et al. pointed out that SERPINA1 was
correlated with lymph node metastasis in colorectal cancer
and promoted cancer progression via fibronectin [59]. Orte-
ga et al. demonstrated the effects of SERPINA1 on lung func-
tion  and  emphysema  using  deep  gene  resequencing  [60].
Normandin et al. found that SERPINA1 played a key role in
the progression from a primary tumour to invasive metasta-
sis as a protease inhibitor in epithelial ovarian cancer [61].
The findings show that the effect of SERPINA1 in metastasis
is undeniable, but the role of SEROPINA1 in metastasis in
lung adenocarcinoma merits further study.

SDC2 (Syndecan 2) is a protein-coding gene for cell sur-
face proteoglycan that bears heparan sulfate. It regulates den-
dritic arbor morphogenesis. Huang et al. pointed out the rela-
tionship between SDC2 and CYR61 in regulating the trans-
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forming growth factor-beta (TGF-beta) signalling pathway,
which plays a significant role in tumour development [62].
Hua et al. found that SDC2 played a carcinogenic role in col-
orectal cancer by promoting epithelial-mesenchymal transi-
tion (EMT) in colorectal cancer cells [63]. Sun et al. found
that  RKIP  and  HMGA2  regulated  the  metastasis  of  breast
cancer through lysyl oxidase and SDC2 [64]. Tsoyi et al. de-
monstrated that SDC2 silencing in vivo reduced lung adeno-
carcinoma tumour metastasis [65]. Previous studies have al-
ready shown important roles of SDC2 in lung adenocarcino-
ma tumour metastasis; however, clear mechanisms still need
to be determined.

GNG11 (G Protein Subunit Gamma 11) encodes guanine
nucleotide-binding proteins (G proteins), which are involved
as modulators or transducers in various transmembrane sig-
naling systems. The beta and gamma chains are required for
GTPase activity,  for  GTP replacement by GTP, and for G
protein-effector interactions. Hua et al.  found that GNG11
acted  as  a  key  gene  in  lung  adenocarcinoma;  however,  it
was not associated with survival [66]. Shi et al. used bioin-
formatics tools to identify GNG11 as a key gene in female
lung cancer patients who never smoked associated with poor
overall survival [67]. Studies of the role of GNG11 in lung
adenocarcinoma tumour metastasis are rare, and its expres-
sion in metastatic cells was significantly upregulated, indicat-
ing that activating GNG11 may be a potential biomarker for
prognosis and treatment of metastasis.

CONCLUSION
In summary, the present study identified CKAP4, SERPI-

NA1, SDC2, and GNG11 as key genes for brain metastasis
in lung adenocarcinoma. The results provide new insights in-
to the development between primary tumours and metastatic
tumours  of  lung  adenocarcinoma,  and  these  potential  bio-
markers may lead to better prognosis and treatment of lung
adenocarcinoma. However, further molecular biological ex-
periments are still required to confirm the functions of the
identified key genes.
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