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Abstract

Single-cell RNA sequencing (scRNA-seq) has enabled researchers to study gene expression at the cellular level. However, due
to the extremely low levels of transcripts in a single cell and technical losses during reverse transcription, gene expression
at a single-cell resolution is usually noisy and highly dimensional; thus, statistical analyses of single-cell data are a
challenge. Although many scRNA-seq data analysis tools are currently available, a gold standard pipeline is not available for
all datasets. Therefore, a general understanding of bioinformatics and associated computational issues would facilitate the
selection of appropriate tools for a given set of data. In this review, we provide an overview of the goals and most popular
computational analysis tools for the quality control, normalization, imputation, feature selection and dimension reduction
of scRNA-seq data.
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Introduction
RNA sequencing (RNA-seq) technology is a powerful tool for
profiling gene expression patterns, which makes it possible
for biologists to study different transcriptomes in pooled cells
[1]. However, conventional bulk RNA-sequencing only quantifies
the average expression signal for a large population of cells
and does not reveal the heterogeneity of cells. Single-cell RNA
sequencing (scRNA-seq) technology has become increasingly
popular because it allows researchers to identify the transcrip-
tomes profiles of individual cells [2–14]. To date, scRNA-seq
studies have already shown great efficacy in the discovery of
novel cell types, reconstruction of developmental trajectories
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and study of tumour heterogeneity [15–22]. The development of
this technology is also providing new insights to support a better
understanding of biological development and disease [23–25].

Although scRNA-seq provides convenience in biological
studies, many drawbacks remain regarding this technology. Due
to the extremely low amounts of transcripts in a single cell, low
capture efficiency of mRNA and technical losses during reverse
transcription (RT), numerous cycles of the cDNA-amplification
process are required to meet the needs of sequencing [26,
27]. These factors lead to extremely noisy, highly dimensional
and sparse gene expression matrices [28, 29]. Therefore,
to fully exploit scRNA-seq technology, specifically designed
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2 Zhang et al.

computational tools for scRNA-seq data are needed. In recent
years, the explosive increase in single-cell analysis tools has
increased the difficulty of selecting appropriate tools for a given
set of data [30, 31]. Although several user-friendly tools [32–
34] have been developed to process and interpret scRNA-seq
data, they are to some extent a ‘black box’ for users. We believe
that an understanding of the computational methods for each
step would help researchers to choose more suitable pipelines
and tools for their data. Accordingly, bioinformatics reviews are
needed to summarize the goals and computational methods
that apply to these tools.

Many reviews have focused on downstream analyses (clus-
tering, trajectory inference, visualization, etc.) [35–37] of scRNA-
seq data, whereas few papers have summarized the specific
processing steps (e.g. methods for data quality control—QC, nor-
malization, imputation, feature selection and dimension reduc-
tion). However, these processing steps are extremely significant
for downstream analysis, especially because of the high spar-
sity and technical noise of scRNA-seq data. In this review, we
focus on summarizing the goals and popular computational
approaches for each processing step of scRNA-seq data.

Overview of scRNA-seq technology
Several scRNA-seq protocols have been developed over the past
decade [38–46]. In general, the pipeline of scRNA-seq includes
the following steps: (i) single cells are first isolated from a
tissue; (ii) cell lysis is performed to obtain mRNA; (iii) mRNA
molecule capture is performed; (iv) mRNA is converted to cDNA
using RT; (v) cDNA is amplified by polymerase chain reaction
(PCR); (vi) library preparation is performed and (vii) sequencing
is performed [16, 45, 47–49] (Figure 1).

All protocols can be roughly divided into two categories based
on their quantification method. The first category includes full-
length protocols (e.g. SMART-seq2 [44]), in which the sequencing
step attempts to produce uniform coverage for each transcript,
and the second category includes tag-based protocols, which
only capture and sequence 3′-end transcripts (e.g. inDrop [45]
and Drop-seq [46]) or 5′-end transcripts (e.g. STRT-seq [43]). Nor-
mally, tag-based protocols are used in combination with unique
molecular identifiers (UMIs) [14, 50, 51], which are used as bar-
codes for individual mRNA molecules to reduce the technical
noise during the RT and amplification steps.

Based on the strategy of capturing cells, the protocols can
also be divided into plate-based and droplet-based methods.
Because of the high throughput, droplet-based technology (e.g.
inDrop [45], Drop-seq [46] and 10X Genomics) has become the
most popular strategy for isolating single-cell RNA. Droplet-
based commercial chromium from 10X Genomics can achieve
thousands of captured cells per run [49]. However, the high-
throughput nature of the droplet-based protocol occurs at the
cost of low sequencing depth (i.e. reduced total transcripts cap-
tured from each cell) [52]. Therefore, droplet-based protocols
contain more technical noise than plate-based protocols, while
plate-based protocols are preferable when dealing with rare cell
types.

After sequencing, the first step of scRNA-seq data analy-
sis is to generate a gene expression matrix wherein each row
represents a gene and each column represents a cell. Briefly,
this process is accomplished by mapping each sequencing read
to a reference genome and counting the number of mapped
reads [53]. The initial output of FASTQ files obtained from the
sequencing step are first pre-processed by QC and read align-
ment. The most popular tools for QC include FASTQC [54] and

Cutadapt [55]. FASTQC takes sequencing FASTQ files obtained
from the sequencing machine as input and returns a reads qual-
ity report, then Cutadapt could be used for trimming the reads
to improve the reads quality. For pipelines using UMIs, UMI-
tools [30] can also be performed to trim the barcode. As errors in
the UMI sequence are common, UMI-tools introduce network-
based methods to account for these errors when identifying
PCR duplicates. The end-to-end pipeline Alevin [56] extends
UMI-tools and is used as an alternative method to Cell Ranger
pipeline. Compared with Cell Ranger, Alevin achieves a higher
accuracy and is considerably faster. Due to the widely existence
of deletion and mismatch errors in cell barcodes, identifying
cell barcodes from all sequencing data is a very challenging
computational task. As for the scRNA-seq data generated by
10X genomics, a known ‘whitelist’ of sequences (i.e. the list of
all known barcode sequences that have been included in the
assay kit) could be used as prior knowledge to simplify error-
correction and read assignment [57]. With regard to the barcodes
generated through split-pool synthesis (e.g. Drop-seq), multiple
sequence alignment may be the best choice for detecting and
correcting the errors [58]. For aligners, STAR [59], Tophat2 [60]
and HISAT [61] are the most widely used. Generally, STAR shows
both higher mapping accuracy and speed than TopHat2 and
HISAT, while HISAT uses lower memory usage. STAR is used
by the popular software Cell Ranger from 10X genomics for
mapping and quantifying. Recently, the authors of STAR have
presented a new addition named STARsolo [62] to STAR align-
ment program. Compared with Cell Ranger, STARsolo improves
the computing speed and saves significant computing resources
in barcode demultiplexing and UMI counting. In addition to the
gene counts, STARsolo can also calculate counts for pre-mRNA
counts, which is useful for single-nucleus RNA-seq. To reveal the
true biological signals, processing steps must be performed on
the gene expression matrix before further downstream analysis.
In the section below, we summarize the goals and state-of-the-
art methods for scRNA-seq processing steps: QC, normalization,
imputation, feature selection and dimension reduction.

Data cleaning by QC
Even after performing several QC steps during the pre-
processing step, the raw count matrix usually still contains
many low-quality cells, which can be caused by a variety of
reasons, such as dead cells during cell isolation, inefficient
RT or PCR amplification. These low-quality cells may cause
several problems for downstream analysis: (i) the inclusion of
low-quality cells, which have low expression values across all
genes could lead to a similar pattern of gene expression and
the formation of a cluster and thus may erroneously indicate
a new cell type; and (ii) low expression values across cells
make the analyses extremely sensitive to noise. For instance,
contaminating with a low-quality exogenous transcript could
lead to substantial impacts on variance estimation or dimension
reduction.

Consequently, applying a filter for removing low-quality cells
is extremely important before further analysis. Currently, widely
used QC metrics include library size, expressed gene detec-
tion, proportion of reads or UMIs mapped to the mitochondrial
genome and proportion of reads mapped to External RNA Con-
trol Consortium (ERCC) spike-in transcripts. Library size consists
of the overall endogenous reads count or UMI count for each
cell. Filtering lower library sizes for QC is easy to understand
since low-quality cells generally have lower expression values.
Moreover, cells with an extremely high library size also need
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Goals and approaches for each processing step 3

Figure 1. Workflow of scRNA-seq technology. Single cells are first isolated from biological tissue, and mRNA is captured and amplified to obtain the sequencing library.

After sequencing, the gene expression matrix is processed by QC, normalization, imputation, feature selection and dimension reduction in a step-by-step process.

Finally, the processed expression matrix can be used for cell-level and gene-level downstream analyses.

to be removed because they may be caused by a doublet (i.e.
two or more cells captured in one droplet with the same cell
barcode). Another QC metric is expressed gene detection, which
means the number of endogenously expressed genes that were
detected in each cell, and it is applied similarly to library size.
A high proportion of mitochondrial RNA also indicates low-
quality cells because in a damaged cell, mRNA transcripts efflux
from the cell membrane, while the mitochondria are too large
to escape, which leads to a high proportion of reads or UMIs
mapped to the mitochondrial genome. Alternatively, synthetic
spike-in RNA molecules from (ERCC) can also be used to reveal
the true biological differences among cells [15, 63]. Similarly,
when the same amount of ERCC spike-in is add to each cell, if
the proportion of reads mapped to ERCC is too high in one cell,
then it is identified as a low-quality cell. However, ERCC spike-
ins are an alternative for scRNA-seq experiments, indicating that
this metric does not apply to every dataset [64].

To remove low-quality cells, fixed thresholds for each met-
ric are widely used (Figure 2). These thresholds are generally
determined by experimental experience with the protocols and
biological systems. Alternatively, adaptive thresholds could also
be used based on the median absolute deviation (MAD) for each
metric. Specifically, a cell is regarded as an outlier of high-
quality cells and should be removed if it is more than three
MADs from the median in any metric. Generally, the strategy
of adaptive thresholds does not require a lot of experience to
determine appropriate thresholds; hence, it is more friendly to a
non-expert.

Normalization
As previously mentioned, due to the different cDNA capture
efficiency and PCR amplification, a great deal of technical bias

occurs across cells. Normalization is a significant step to remove
these biases across cells for downstream analyses. Historically,
library size normalization is usually sufficient for bulk sequenc-
ing data [64]. The simplest library size method is to transform
each read count or UMI count to counts per million (CPM). The
CPM values are simply calculated by dividing the total count val-
ues for each sample and then multiplying by 1 million. The other
confounder that may bias the results is gene length because
longer genes will naturally have more reads mapped to them
than shorter genes. To remove this bias, transcripts per million
(TPM) [65], reads per kilobase million (RPKM) and fragments per
kilobase million (FPKM) [66], which are similar to CPM, have
been proposed. RPKM and FPKM are two very closely related
terms and the only difference between them is that RPKM is for
single end sequencing while FPKM is for paired end sequencing.
Unlike RPKM and FPKM normalize for sequencing depth before
normalizing for gene length, TPM first normalize for gene length
and then normalize for sequencing depth, thus all transcripts in
a sample shall add up to 1 million. However, these methods may
all hide the biological signals we are interested in if the highly
expressed genes (HEGs) are also the differentially expressed (DE)
genes. Many other cell-specific scaling factor methods have been
developed for bulk RNA-seq data, such as DESeq [67] and DESeq-
2 [68], which calculate the size factor (SF) for each cell using the
geometric mean of each gene.

However, compared with bulk RNA-seq data, scRNA-seq data
are much sparser and consist of a high proportion of low and
zero values caused by both biological differences and technical
noise; therefore, the high proportion of zero counts reduces the
accuracy of calculated geometric means. When the relationship
between transcript expression and library size is not similar
across genes, the ‘SF’ method tends to overcorrect the low and
moderately expressed genes.
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Table 1. Normalization methods for scRNA-seq data

Method Description Availability Refs

BASiCS Uses spike-in genes to remove technical noise and
normalizes the data using an estimated cell-specific
constant

https://github.com/catavallejos/BASiCS [69]

GRM uses ERCC spike-in genes and FPKM values of reads to fits
an GRM and then estimates the molecular concentration.

http://wanglab.ucsd.edu/star/GRM [70]

scran Pools cells by similar library size and then estimates an SF https://bioconductor.org/packages/release/bioc/
html/scran.html

[33]

Linnorm utilizes a set of homogenously expressed gens as
reference, and then calculates normalisation parameters
by ignoring zero values.

http://www.jjwanglab.org/Linnorm/ [71]

SCnorm Uses quantile regression to group similar dependence
genes, then performs within-group adjustment for library
size to estimate scale factors

https://github.com/rhondabacher/SCnorm [72]

Census Converts conventional measures of relative gene
expression levels (e.g. TPM) into relative transcript counts
without the need for spike-in standards or UMIs

https://github.com/cole-trapnell-lab/monocle2-
rge-paper

[73]

Figure 2. Example of QC for scRNA-seq data using fixed thresholds. (a) Low-quality cells are filtered out using the library size. As mentioned in the main text, cells

with an extremely low library size and extremely high library size should be removed. In this example, library sizes larger than 1000 UMIs and smaller than 8000 are

retained (regions between the two dashed lines). (b) Low-quality cells are filtered out using detected genes. Similar to part (a) but detected genes between 250 UMIs and

2000 UMIs are retained (regions between the two dashed lines). (c) Low-quality cells are filtered out using the proportion of reads or UMIs mapped to the mitochondrial

genome (MT percent). Here, the cells with mitochondrial percentages higher than 10% were removed.

With the development of scRNA-seq technology, several
specifically tailored single-cell normalization methods have
been proposed (Table 1). BASiCS (Bayesian Analysis of Single-
Cell Sequencing data) [69] uses ERCC spike-in genes to remove
technical noise and normalize the data using an estimated cell-
specific constant. Gamma Regression Model (GRM) [70] uses

ERCC spike-in genes and FPKM values of reads to fits an GRM
and then estimates the molecular concentration. Scran [33] pools
cells by similar library size and then estimates an SF, thereby
overcoming the problem of scRNA data being dominated by low
and zero counts. Linnorm [71] utilizes a set of homogenously
expressed gens as reference and then calculates normalization
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Figure 3. Comparison of visualization schemes using different feature selection methods and different numbers of genes in mammalian cells [91]. Each column

indicates different feature selection methods, with the first using all genes without feature selection and the second using a certain number of random genes. The

following feature selection methods are mentioned in the main text: HVG-based, HEG-based, Gini-index-based and Dropout-based methods. Each row uses different

gene numbers: 2000, 1000, 500 and 200. After gene selection by each method, we applied the visualization method UMAP [92] for final visualization.

parameters by ignoring zero values. SCnorm [72] first uses
quantile regression to group similar dependence genes and then
performs within-group adjustment for library size to estimate
scale factors. Census [73] converts conventional measures of
relative gene expression levels (e.g. TPM) into relative transcript
counts without the need for spike-in standards or UMIs.

In summary, due to the sparse characteristic of scRNA-
seq data, traditional bulk RNA-seq normalization methods are
not applicable. Specialized normalization methods tailored for
scRNA-seq data, such as scran and SCnorm, would help the
researchers to obscure true biological heterogeneity rather than
technical biases.

Imputation
Dropout events are widely existing phenomena in scRNA-seq
data. A dropout event occurs when a gene is observed in one
cell but shows zero or near zero expression values in another
cell. Dropout events not only increase the cell-to-cell variability
but also obscure gene–gene relationships [74, 75]. To alleviate the
influence of widely existing dropout events, several imputation
and smoothing methods have been developed (Table 2). The
primary difference between imputation methods and smoothing

methods is that imputation methods typically only focus on
the zero value for correction while smoothing methods try to
correct all values in the dataset. Some researchers argue that
since technical noise affects the whole transcriptome instead
of just zero values, smoothing methods are a more reasonable
choice [76].

SAVER (Single-cell Analysis Via Expression Recovery) [77] was
developed for UMI-based scRNA-seq data, and it recovers expres-
sion values by borrowing information across genes and cells
using a Bayesian model. DrImpute [78] first identifies similar
cells using clustering methods and then performs imputation
by averaging the expression values from similar cells. scImpute
[79] attempts to reduce imputation noise by identifying the
dropout events first and only performing imputation on these
values using a gamma-normal mixture model. Inspired by the
success of autoencoder in collaborative filtering, AutoImpute
[80] imputes scRNA-seq data using an over-complete autoen-
coder model. MAGIC (Markov Affinity-based Graph Imputation
of Cells) [81] imputes scRNA-seq data by borrowing information
from neighbouring cells using a Markov affinity-based graph.
kNN-smoothing (k-nearest neighbour smoothing) [82] first iden-
tifies the k nearest neighbours in a step-wise fashion and then
performs smoothing by aggregating gene-specific UMI counts.
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Of note, imputation is not a necessary part of the analysis
pipeline and is usually not recommended before DE genes anal-
ysis, as the artificial changes of the expression values may intro-
duce new noise. Some researchers recently argued that droplet-
based scRNA-seq data are not zero-inflated, which eliminates
the need for an imputation step [83]. Moreover, some researchers
argued that certain terminology (e.g. ‘dropout’, ‘missing data’,
etc.) should not be used because the high proportion of zero val-
ues is mostly caused by biological variance rather than technical
noise [84].

Feature selection
The dimensionality of scRNA-seq data refers to the gene number
in the count matrix. Although the gene expression matrix of
scRNA-seq data normally has more than 20 000 genes, not all
genes are equally important. Some genes (e.g. house-keeping
genes) show similar expression values in all cells; hence, most
of them are not useful for investigating cellular heterogeneity
[85]. Feature selection refers to excluding these uninformative
or noise genes and only focusing on the biological variance
genes. This process not only reduces the noise that obscures the
biological structure but also reduces the size of the count matrix,
thereby improving the computational efficiency for downstream
analyses. In general, the methods for feature selection can be
divided into four categories, which are discussed below [86]
(Table 3).

Highly variable gene-based methods

This type of method attempts to identify the most variable genes
for further analysis [87]. In scRNA-seq data analysis, the Fano
factor is widely used to measure variability, and it is defined as
the ratio between the variance and the mean. Seurat is one of
the most popular scRNA-seq methods [32], and it uses highly
variable genes (HVGs) to perform feature selection. Of note,
although the Fano factor performs well in most circumstances,
it is not suitable for identifying rare cell types [32].

HEG-based methods

This method calculates the highest average expression levels
across cells and is sometimes also used for informatics-based
gene selection [35].

Gini-index-based methods

GiniClust [88] takes the characteristics of scRNA-seq data (zero
values or low expression levels across most of the samples) into
consideration to normalize the Gini index. The novel gene selec-
tion methods developed by GiniClust show good performance in
analysing rare cell types.

Dropout-based methods

Previous studies demonstrated that dropout rates are strongly
correlated with expression levels [83]. M3Drop [89] fits a
Michaelis–Menten function to the relationship between mean
expression and dropout rate.

We compared all of the feature selection methods mentioned
above with different gene numbers (Figure 3). Concentrating on
the first row of Figure 3, which selects 2000 genes using each
method, we found that all methods still reveal biological differ-
ence in different cell types. Surprisingly, even a random selection

of 2000 genes preserved most of the biological variance across
cells. This phenomenon also enhanced the feasibility and neces-
sity of feature selection. When the number of selected genes
was reduced, most feature selection methods performed worse.
However, the dropout-based method M3drop exhibited great
performance with only 200 genes, and the visualization result
was even better than that for raw data using all the genes. The
reason for this result may be that genes with high dropout rates
introduce more technical noise than actual biological differ-
ences. Therefore, we highly recommend that researchers choose
the M3drop method when they only want to select low numbers
of genes for downstream analysis.

To further validate this conclusion, we also assessed these
feature selection methods using another two scRNA-seq
datasets. The results shown in Supplementary Figure 1 were
generated by Li et al. [90] containing 561 cell samples in eight
cell types. The results showed a consistent conclusion with
Figure 3 that M3drop performed best in all of four circumstances,
especially with 200 genes. We then used a dataset generated
by Klein et al. [45] containing mouse embryo stem cells to
check the influence of feature selection methods on trajectory
analysis. The results in Supplementary Figure 2 illustrated that
visualization results using M3drop as feature selection method
showed clearly dynamic changes (i.e. from day 0 to day 7) in all
of four different circumstances, which beats the visualization
results using other feature selection methods and the raw data
without feature selection step. To sum up, we think that M3drop
method is the best feature selection method for both clustering
analysis and trajectory analysis.

Dimension reduction
Dimension reduction refers to methods that are designed to
capture the underlying structure of the expression matrix. A
low-dimension underlying structure is also known as embed-
ding high-dimension data, such as scRNA-seq data [93, 94].
In other words, dimension reduction attempts to identify the
low-dimension biological manifold of scRNA-seq data.

To overcome the ‘curse of dimension’, dimension reduction is
a crucial step for further analysis of scRNA-seq data. scRNA-seq
data often contain many highly correlated genes, even after the
feature selection step [23]. Because redundant genetic informa-
tion is not helpful for downstream analysis, dimension reduc-
tion methods aim to represent high-dimension data via low-
dimension embedding, which is both more computationally effi-
cient and reliable. We divided the dimension reduction methods
into the four categories discussed below (Table 4).

Linear model

Principal component analysis (PCA) [95] is historically the most
traditional dimension reduction method for high-dimensional
data, and it tries to reduce the dimensionality of the data by iden-
tifying the largest amount of variance. However, PCA can only
model linear patterns and cannot easily analyse complex scRNA-
seq data. Taking the noisy characteristics of scRNA-seq data into
account, zero-inflated factor analysis (ZIFA) [96] is also widely
used for scRNA-seq data dimension reduction. ZIFA uses a zero-
inflated model to account for the high frequency of zero values
in scRNA-seq data. The factorial single- cell latent variable model
(f-scLVM) [97] creates the embedding by explicitly modelling
annotated gene sets; therefore, the reduced dimensions are
more interpretable.
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Table 2. Imputation and smoothing methods for scRNA-seq data

Method Description Availability Refs

SAVER Recovers expression values by borrowing information
across genes and cells using a Bayesian model

https://github.com/mohuangx/SAVER [77]

DrImpute Finds similar cells using clustering methods, then
performs imputation by averaging the expression
values from similar cells

https://github.com/gongx030/DrImpute [78]

scImpute Reduces the imputation noise by identifying dropout
events first and only performing imputation on these
values using a gamma-normal mixture model

https://github.com/Vivianstats/scImpute [79]

AutoImpute Imputes scRNA-seq data with an over-complete
autoencoder model

https://github.com/kearnz/autoimpute [80]

MAGIC Imputes by borrowing information from neighbour cells
using a Markov affinity-based graph

https://github.com/KrishnaswamyLab/MAGIC [81]

kNN-smooth Identifies k nearest neighbours in a step-wise fashion
and then performs smoothing by aggregating
gene-specific UMI counts.

https://github.com/yanailab/knn-smoothing [82]

Table 3. Feature selection methods for scRNA-seq data

Method Category Availability Refs

Seurat HVG https://satijalab.org/seurat/ [32]
GiniClust Gini-index based https://github.com/lanjiangboston/GiniClust [88]
M3Drop Dropout-based https://github.com/tallulandrews/M3Drop [89]

Table 4. Dimension reduction methods for scRNA-seq data

Method Category Availability Refs

PCA Linear https://github.com/dhamvi01/Principal-Component-Analysis-PCA---Python/blob/
master/PCA.ipynb

[95]

ZIFA Linear https://github.com/epierson9/ZIFA [96]
f-scLVM Linear https://github.com/scfurl/f-scLVM [97]
t-SNE Nonlinear https://github.com/shivanichander/tSNE/blob/master/Code/tSNE%20Code.ipynb [99]
UMAP Nonlinear https://github.com/lmcinnes/umap [92]
DCA Deep learning https://github.com/theislab/dca [103]
scVI Deep learning https://github.com/shahcompbio/scvis [98]
scBFA Others https://github.com/quon-titative-biology/scBFA [104]

Nonlinear model

scRNA-seq data have a nonlinear structure, and nonlinear
models have the potential to show better performance [98].
The famous t-SNE (t-distributed stochastic neighbourhood
embedding) [99, 100] method has become one of the most
popular nonlinear dimension reduction techniques, and it
also widely used for scRNA-seq data. However, t-SNE can only
deal with local structures, such as trajectory analysis, thus
limiting its performance for further study. In contrast, the
newly developed method uniform manifold approximation
and projection (UMAP) [92] preserves both global and local
structures by preserving the high-dimensional topology in
low-dimensional space.

Deep learning-based methods

Recently, deep learning methods, which can also capture the
nonlinear features, have become increasingly popular for the
analysis of scRNA-seq data [101, 102]. Deep count autoencoder
(DCA) [103] uses the denoising autoencoder to denoise the
scRNA-seq dataset with a zero-inflated negative binominal

model. Single-cell variational inference (scVI) [98] creates a
probabilistic model using a neural network to quantify the
uncertainty of each gene expression estimate, which preserves
both the local and global structures of the data.

Other methods

Single-cell binary factor analysis (scBFA) [104] aims at reducing
the dimensions of large scRNA-seq data by ignoring the quanti-
fied counts value. The author assumes that when the sample
size is ultra-large, the gene quantification value (i.e. counts)
will be too low due to technical noise. Because the low signal
to noise ratio decreases the accuracy of the gene quantifica-
tion, scRFA only employs gene detection to perform dimension
reduction.

In summary, linear models could capture the linear patterns
and preserve the global structure of the data. However, due to
the nonlinear structure of scRNA-seq data, nonlinear model and
deep learning-based methods are more suitable for dimension
reduction, especially new developed method UMAP, which could
capture both global and local structures.
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Conclusions and outlook
As a highly promising technology, scRNA-seq allows researchers
to study the heterogeneity of gene expression in individual cells
in large cell populations, thus enabling the identification of the
dynamics underlying tissue and organism development. More-
over, due to the large scale of sparse and noisy data produced
by scRNA-seq, high-efficiency computational tools are essential.
In this review, we concentrated on the data processing steps for
analysing these noisy sequencing data. Specifically, we reviewed
the goals and popular tools for QC, normalization, imputation,
feature selection and dimension reduction to apply for analyses
of scRNA-seq data. We hope that this study will help researchers
choose suitable processing methods for analysing scRNA-seq
data.

Unfortunately, because single-cell sequencing technologies
are relatively new, standardization is lacking for analyses in
this field. More comparisons of processing work need to be
performed to evaluate existing methods for addressing the com-
plexities of scRNA-seq data. Moreover, due to the emergence
of increasing scRNA-seq datasets, data integration and analysis
approaches would be more and more important. Although there
have already been many computational tools and workflows
for analysing scRNA-seq data, comprehensive comparisons of
different tools and best practices workflows are still needed for
better utilizing this technology.

Key Points
• This paper reviewed the goals and various compu-

tational analysis tools (quality control, normaliza-
tion, imputation, feature selection and dimension
reduction) for processing single-cell RNA sequencing
(scRNA-seq) data.

• We briefly discussed the advantages and disadvan-
tages of the methods introduced in the article.

• Processing steps are extremely significant for down-
stream analysis of scNRA-seq data, and we provided a
comprehensive description and the URLs of process-
ing tools for scRNA-seq data.

• This paper also provided a guide for non-specialists
who aim to utilize scRNA-seq technology.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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