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Abstract

With the development of artificial intelligence (Al) technologies and the availabil-
ity of large amounts of biological data, computational methods for proteomics have
undergone a developmental process from traditional machine learning to deep learn-
ing. This review focuses on computational approaches and tools for the prediction of
protein-DNA/RNA interactions using machine intelligence techniques. We provide an
overview of the development progress of computational methods and summarize the
advantages and shortcomings of these methods. We further compiled applications in
tasks related to the protein-DNA/RNA interactions, and pointed out possible future
application trends. Moreover, biological sequence-digitizing representation strategies

used in different types of computational methods are also summarized and discussed.
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1 | INTRODUCTION

The interactions among biomolecules comprise a universal theme in
living organisms, and an analysis of this is not only the focus of
many disciplines but also the focus of applied research. Biomolecu-
lar interactions mainly include nucleic acid-nucleic acid interactions,
nucleic acid-protein interactions, and protein-protein interactions,
etc. Among them, the interactions between proteins and nucleic acids
(general terms of DNA and RNA) are widely prevalent in the regula-
tion of life activities, such as gene replication, transcription, transla-
tion, modification, and other processes that are inseparable from the
interactions between DNA/RNA and protein [1-4]. By understanding
the function of proteins in interactions, we can further understand the
mechanisms of related cellular process mechanisms, such as viral infec-
tions, or the design of new drug targets. For example, in the initial
research phase of the new type of coronavirus pneumonia (COVID-
19) caused by SARS-CoV-2 infection, one of the most urgent tasks is
to understand the mechanisms underlying the molecular interactions
between protein and viral RNA, which might promote virus replication
or facilitate host defense in infected cells [5,6]. Therefore, it is impor-

tant to understand the interactions between proteins and DNA/RNA.

Research methods to study the interactions between proteins
and DNA/RNA include experimental and computational techniques.
Experimental approaches for protein-DNA/RNA interactions, such as
electrophoretic mobility shift assay [7,8], chromatin immunoprecipita-
tion (ChIP) [9], X-ray diffraction crystallography, and UV-crosslinking
immunoprecipitation, are usually time-consuming and costly [10,11].
Therefore, computational methods have become increasingly popular
in the field of bioinformatics since the 1990s owing to the development
of machine intelligence methods in the era of artificial intelligence
(Al).

Al has been rapidly and radically changing in various areas of
industry and our lives as Al technology is flourishing and demanding.
The field of bioinformatics, which aims to improve our understanding
of biological data by developing methods, tools, and software, is a
major benefactor of the recent advancements in Al. Because of the
application of Al technologies to bioinformatics [12,13], computational
methods for the prediction of interactions between proteins and
DNA/RNA have undergone a developmental process from traditional
machine learning to deep learning. This review focuses on computa-
tional approaches and tools using machine intelligence techniques

to understand protein-DNA/RNA interaction. We summarized the
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machine learning (deep learning) approaches that can be utilized
to predict interactions between protein and DNA/RNA, including
their advantages and shortcomings, applications in tasks related to
the protein-DNA/RNA interactions, and possible future application
trends.

2 | COMPUTATIONAL METHODS IN THE ERA OF
Al: FROM MACHINE LEARNING TO DEEP
LEARNING

2.1 | Development process for computational
methodsin the Al era

Computational approaches can be classified into sequence and
structure-based methods. Because three-dimensional (3D) protein
structure is generally more conserved and has more information com-
pared to the amino acid sequences (primary structures), structural sim-
ilarity is a good indicator of similar functions among proteins. More-
over, structure-based methods usually perform better than sequence-
based methods. Structural information, such as accessible surface area
(or solvent-accessible surface area), secondary structure (including
hydrogen-bonding potential, helical conformation, etc.), can be utilized
as feature vectors for protein function prediction. These structural
feature data are typically obtained through DSSP algorithm and pro-
tein databases such as Protein Data Bank (PDB). Structural features
separately or combined with sequence-based features are commonly
employed for protein function prediction models including statistical
models and machine learning-based models that uses computational
algorithms such as statistics singular value decomposition algorithms
[14] and machine learning algorithms (e.g., naive Bayesian method, ran-
dom forest) [15,16]. However, structures are not available for most
proteins. When the structure of a target protein has not yet been
experimentally determined, computational structure prediction meth-
ods can be applied to model the 3D structure. However, this approach
cannot obtain good accuracy when homologous templates are not
available at the early stage. Thus, many sequence-based computational
methods have been developed.

In the era of Al, the sequence-based computational methods in pro-
teomics have roughly gone through a process from homology-based
methods and machine learning-based methods to deep learning-based
methods. Homology-based methods predict the function of a protein
by computing the similarity between biological sequences (sequence
identity). Sequences with high similarity are generally considered to
have similar functions. Sequence similarity can be computed using
multiple sequence alignment tools (e.g., BLAST [17]) or by search-
ing databases, such as the UniProtKB database [18], Gene Ontology
database [19], Pfam [20], and PROSITE [21], in which the entries can
be used for protein functional prediction. However, for some specific
tasks, the homology-based method is not realistic when few databases
of target sequences are available.

Owing to the continued development of Al techniques and the

increasing maturity of machine learning algorithms, machine learn-

ing algorithms have become increasingly popular in sequence-based
computational methods for the prediction of protein-DNA/RNA inter-
actions. In the 2000s, traditional machine learning methods, such as
support vector machine (SVM), decision trees, naive Bayes classifier,
random forest [22,23], and logistic regression, were most popular.
These algorithms cannot be directly applied to raw data (biological
sequences). Instead, a preprocessing step called feature extraction is
required. This step requires human experts to have a detailed knowl-
edge of the task, adaptation, testing, and refinement over several iter-
ations. Therefore, machine learning is considered more dependent on
manual human intervention.

Due to the limitations of traditional machine learning methods and
arrival of the big data era, deep learning methods, a subset of machine
learning, has gradually surpassed traditional machine learning meth-
ods. Since 2005, deep learning has brought large changes to Al; in gen-
eral, deep learning has driven many Al applications and services that
improve automation by performing analytical and physical tasks with-
out human intervention [24,25]. Deep learning is essentially a neu-
ral network with several neural network layers (three or more layers)
and large-scale training datasets. Precisely because of the deeper neu-
ral network layers and larger training datasets, deep learning-based
applications typically outperform traditional machine learning-based
models. In the past decade, as a large amount of biological data have
become available [26,27], deep learning approaches have been widely
utilized in proteomics [28,29]. In one study [28], convolutional neural
networks (CNNs) were used to predict the sequence specificities of
DNA- and RNA-binding proteins using primary biological data. Another
study [30] presented a prediction algorithm for prediction protein sub-
cellular localization using CNN and a recurrent neural network (RNN)
only from sequences. Hashemifar et al. [31] presented a deep learn-
ing framework for predicting protein-protein interactions based on
amino acid sequences, in which protein sequence pairs are projected
onto a representation by convolutional modules. Kulmanov et al. [32]
developed a novel classifier for protein functional prediction based on
sequence and interaction information, in which sequence data were
represented as trigrams of amino acids and embedded through CNN

layers.

2.2 | Categorization of computational methods

Classical machine learning (deep learning) can be categorized into four
basic approaches, unsupervised learning, semi-supervised learning,
supervised learning, and reinforcement learning [33]. The type of algo-
rithm you chosen depends on the type of data available. In supervised
learning, labeled inputs and targets (desired outputs) are required to
train the algorithm. Supervised learning algorithms are usually suitable
for classification tasks (binary or multiclass classification), regression
problems (prediction of continuous values), and ensemble models
(combinations of multiple machine learning models). Frequently used
algorithms in supervised learning include SVM, random forest, and
logistic regression. They are popular in protein functional predic-

tion, such as diverse types of protein binding [34-36]. Unsupervised
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learning refers to training with unlabeled data to group data into
subsets by sifting through unlabeled input data. It is good for the
clustering tasks (grouping dataset based on similarity) and dimen-
sionality reduction, among other tasks. Dimensionality reduction
algorithms (unsupervised learning), such as principal component anal-
ysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE),
are commonly used for protein sequence feature visualization [37-39].
Semi-supervised learning refers to the training of a model with a small
amount of labeled data, which is then used for the new unlabeled data.
Semi-supervised learning algorithms can not only avoid the disadvan-
tage of labeling data (expensive and cost time), but also be used to
implement the improvements in algorithm performance brought about
by training with labeled data. The size of protein database shows an
explosive growth because of new sequencing technologies. However,
the development of annotated subsets lags far behind due to the high
cost of acquiring meaningful labels and annotations. Therefore, semi-
supervised protein representation learning has emerged as an import
pattern in protein modeling [40]. Reinforcement learning, which is a
goal-oriented learning method rather than classifying or clustering
data, is usually utilized with deep learning. It can be considered as
an embedded framework in deep learning. For example, the famous
AlphaGO [41] and AlphaFold [42], provided by DeepMind lab, have
demonstrated that reinforcement deep learning (combining reinforce-
ment learning with deep learning) is applicable in game playing and

protein folding problems.

3 | COMPUTATIONAL APPROACHES UTILIZED IN
PROTEIN-DNA/RNA INTERACTIONS-RELATED
TASKS

The process of predicting protein-DNA/RNA interactions using com-
putational methods can be roughly summarized as follows: (1)
sequence data digitization, (2) model construction and training, and (3)
prediction. In the era of Al and big data, machine learning (deep learn-
ing) methods have been widely used in tasks related to the DNA/RNA-
protein interactions (Figure 1).

The computational model for prediction should be designed accord-
ing to the principles of the algorithms introduced previously herein and
the characteristics of the available data. Generally speaking, traditional
machine learning method-based schemes are chosen when the amount
of data is small; deep learning can be utilized when large amounts of
data are available. This is because the accuracy usually increases with
an increasing amount of training data in deep learning models, and
models can be scaled better with a larger amount of data, whereas tra-
ditional machine learning models might stop improving after a satura-
tion point [43]. In addition, with the development Al and machine learn-
ing (deep learning), diverse frameworks and Al tools have been estab-
lished, such as Scikit Learn [44], Keras [45], PyTorch [46], Tensorflow
[47], Theano [48], and Weka software [49], among others. These frame-
works can be used to construct task models using machine learning
(deep learning) algorithms. Further, they can be chosen depending on

what best meets the desired requirements.

Proteomics and Systems Biology

Sequence digitizing refers to converting the biological sequences to
numerical data (e.g., vectors) that can be used as input for computa-
tional models. In traditional machine learning-based prediction mod-
els, the extracted features are usually selected to compose the digi-
tized representation of sequences. For deep learning-based prediction
models, digitized sequences are acquired by sequence representation
learning (sequence encoding or embedding), either together with the
training of the model or by utilizing a deep neural network-based learn-
ing model. Sequence data digitization is the first necessary step. In this

section, we focus mainly on the types of sequence digitizing schemes.

3.1 | Feature representation for machine learning
models

In traditional machine learning models, such as SVMs, decision
trees and random forests, feature extraction should be preliminar-
ily conducted. In proteomics, composition information, physicochem-
ical properties (such as hydrophobicity, polarizability, volume, helix
probability, sheet probability, isoelectric point, and steric parameters)
of amino acids and protein evolutionary information (e.g., position-
specific scoring matrix, PSSM) can be manually acquired through the
third-party applications [50,51]. For example, Hwang et al. [34] devel-
oped a DNA-binding residue predictor by using three machine learn-
ing approaches, including SVM and two types of logistic regression
methods and PSSM to form feature vectors. Ballester et al. [52] pre-
sented a novel computational method for predicting protein-ligand
binding affinity using random forest and intermolecular interaction
features. Kong et al. [53] proposed an SVM-based classifier to assess
the protein-coding potential of a transcript using features extracted
from the nucleotide sequence of the transcript. Then, statistical mea-
sures were determined to be required as follows: assign a score to each
of the extracted features, rank the features according to their scores,
and decide whether to keep the form feature vectors or remove them.
The extracted features are independent and univariate, and if feature

selection fails, the machine learning model will not perform well.

3.2 | Deep learning-based feature learning

The process of protein-related prediction using a deep neural network-
based model can be roughly described in three parts as follows: feature
representation of sequence data (sequence encoding or embedding);
model construct and training; and prediction outputs. The primary
biological sequences (such as amino acid sequences) can be directly
be used as inputs for the deep learning model, instead of relying
entirely on third-party applications to extract features to form a
numerical representation of the biological data, as in traditional
machine learning methods. The representation learning methods of
biological sequences can be categorized into several groups as follows:
end-to-end learning, LSTM-based representation learning (non-
contextual sequence embedding), and transformer-based sequence

representation learning [54]. Except for graph computation-based
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FIGURE 1 Machine learning algorithms frequently used in research related to the DNA/RNA-protein interactions. Abbreviations: AA, amino
acid; CNN, convolutional neural network; LR, Logistic regression; PSSM, position specific scoring matrix; RF, random forest; RNN, recurrent neural

network; SVM, support vector machine.

representation and mixed representation, the other three representa-
tion methods have been applied in bioinformatics over time according
to their emergence in the field of natural language processing. One-hot
encoding as a typical encoding method of the end-to-end model has
been widely used for proteomics, such as the prediction of protein
function [32], prediction of protein subcellular localization [30], and
identification of disordered regions [55]. Subsequently, the ELMo
model and its variant models that are based on LSTM have been used
in proteomics research for sequence representation learning. For
example, Heinzinger et al. [37] utilized a bidirectional LSTM-based

model to learn sequence data for the prediction of protein function.
Alley et al. [39] proposed a unified representation for amino acid
sequences learned from a multiplicative LSTM-based model, and it
was proven that the representation model has the ability to signif-
icantly improve the efficiency of protein engineering tasks. More
recently, the transformer-based language model for natural language
processing, namely the bidirectional encoder representation from
transformers (BERT) [56,57], has attracted substantial attention
because of its excellent performance. The protein prediction tasks

based on primary sequences are similar to the tasks in the NLP field;
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therefore, the application of the BERT model to bioinformatics is worth
exploring.

In general, from traditional machine learning to deep neural net-
works, the flexibility and performance of the computational model
have gradually improved. However, there are still some problems in
deep learning-based biological sequence representation, such as the
lack of interpretability, which is currently one of the mainstream
research directions of deep learning and is widely regarded as a key
part of the next generation of Al technology. Therefore, representa-
tion learning based on deep learning for biological data should con-
sider strategies for an interpretable deep neural network. Deep neu-
ral networks are habitually considered black box models, from which
model parameters and high-fit identification results are acquired. How-
ever, in addition to the final identification results, the output results
based on the knowledge that the model can learn from the data should
also be considered. Two types of interpretation strategies for deep
learning can be considered, specifically post hoc interpretability anal-
ysis and ad hoc interpretable modeling. The former refers to interpret-
ing the trained model, whereas the latter refers to the design of an
interpretable model from scratch. For biological data representation
in proteomics, feature analysis techniques, such as the visualization of
learned features (characteristics of neurons and layers of neural net-
works) as post hoc interpretability analysis, are more suitable. Aiming
for an ad hoc interpretable modeling strategy (interpretable represen-
tation) to represent biological data, it can be suggested that mixed data
representations, such as sequence and structure information, are used
for data representation, integrating traditional graph-based technolo-
gies into existing deep neural networks (such as CNN).

In recent years, the emergence of AlphaFold [58] has resulted in
considerable advances in protein structure prediction, and a series of
highly reliable protein structure computational models make structural
information available [59-61]. Recently, free access to the AlphaFold
protein structure database [42] (developed by DeepMind and EMBL-
EBI) has been provided. The AlphaFold database covers the most com-
plete and accurate high-quality predictions of the whole protein struc-
ture of the human proteome and 20 other key organisms. Therefore,
highly reliable protein structure data acquired from the database can
be used for proteomics tasks, especially for the feature representation
of biological data, which might have important implications for protein

engineering.

4 | APPLICATIONS IN TASKS RELATED TO
PROTEIN-DNA/RNA INTERACTIONS

Protein-DNA/RNA interaction-related research mainly includes iden-
tification of proteins that bind to DNA/RNA, prediction of binding
sites, and analysis of sequence specificities of DNA- and RNA-binding
proteins. In this section, we focus mainly on tools and approaches
developed on these three research topics, including types of biological
sequence representation (feature extraction), machine learning (deep
learning) algorithms used in these tools, and web servers or code avail-

able provided by researchers, as shown in Table 1.

Proteomics and Systems Biology

For model algorithms, shallow learning algorithms were used in the
early research works, among which SVM is almost the most widely
used method, followed by RF and logistic regression, etc. For instance,
RPISeq [62], mMRMR-IFS-SVM [35], RPI-Pred [10], and StackDPPred
[11] utilize SVM algorithm to identify DNA/RNA-binding proteins;
SVM classifier and its variants are employed for the prediction of
binding sites, such as BindN [63], DP-Bind [64], DISIS [65], PiRaNhA
[36], and TriPepSVM [66]. Studies in recent years focus on deep learn-
ing algorithms, among which CNN and LSTM (bidirectional LSTM) are
extremely popular. Popular examples are the combinations of CNN and
LSTM, such as DeeperBind [67], DanQ [68], iDeep [69], and DeepGRN
[70]. In addition, a few deep learning algorithms, such as transfer learn-
ing, attention mechanism-based deep neural network, and capsule neu-
ral network, have captured researchers’ attention lately. It is notewor-
thy that CNN also can combine with other deep neural networks such
as capsule neural network (CapsNet) and deep transfer learning net-
work. For example, iProDNA-CpasNet [71] conducts a computational
model that consists CNN layers and CapsNet layers for identifying
protein-DNA binding residues.

Regarding the sequence representation (feature extraction), in tra-
ditional machine learning models, protein sequences are usually digi-
tized using extracted features, such as PSSM (i.e., PWM), physicochem-
ical and biochemical properties (AA index), amino acid composition,
secondary structure information, and n-mer peptide (dipeptide and
tripeptide, i.e., n = 2 and 3, are commonly used); RNA sequences are
generally digitized as secondary structure and k-mer frequencies. n-
mer peptide and k-mer frequencies are actually the same matter, while
n-mer peptide (e.g., tripeptide) is frequently employed after group-
ing amino acids. Whereas, in deep learning models, the overwhelm-
ing digital representation of biological sequences is one-hot encoding
which is utilized independently or combined with PSSM and secondary
structure information. Hybrid feature representation might be deeply
explored in further research.

5 | CONCLUSIONS AND OUTLOOK

In the era of Al and big data, the power of big data technology and
Al progress hand in hand with the development of computational
methods in bioinformatics. With the development of Al technologies
and the availability of large amounts of biological data, computational
methods for proteomics have undergone a developmental process
from traditional machine learning to deep learning. This review
focused on these computational approaches in proteomics, especially
for prediction tasks regarding protein-DNA/RNA interactions. We
summarized machine learning (deep learning) methods used in pro-
teomics, including advantages and shortcomings, and the types of
tasks they are suitable for. Moreover, biological sequence-digitizing
representation strategies used in different types of computational
methods are also summarized, and problems existing in biological data
representation methods that use deep learning were pointed out.
Besides, we compiled DNA/RNA-protein interaction-related predic-

tion tools and approaches, especially sequence representation (feature
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extraction) and model algorithms used in these applications. In the

era of Al and big data, further research might explore the combination

of different approaches for Al, such as combining deep learning with

reinforcement learning, deep learning with evolutionary methods,

as well as hybrid feature representation strategies as we suggested

previously herein.
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