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Abstract

With the development of artificial intelligence (AI) technologies and the availabil-

ity of large amounts of biological data, computational methods for proteomics have

undergone a developmental process from traditional machine learning to deep learn-

ing. This review focuses on computational approaches and tools for the prediction of

protein–DNA/RNA interactions usingmachine intelligence techniques.We provide an

overview of the development progress of computational methods and summarize the

advantages and shortcomings of these methods. We further compiled applications in

tasks related to the protein–DNA/RNA interactions, and pointed out possible future

application trends. Moreover, biological sequence-digitizing representation strategies

used in different types of computational methods are also summarized and discussed.
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1 INTRODUCTION

The interactions among biomolecules comprise a universal theme in

living organisms, and an analysis of this is not only the focus of

many disciplines but also the focus of applied research. Biomolecu-

lar interactions mainly include nucleic acid–nucleic acid interactions,

nucleic acid–protein interactions, and protein–protein interactions,

etc. Among them, the interactions between proteins and nucleic acids

(general terms of DNA and RNA) are widely prevalent in the regula-

tion of life activities, such as gene replication, transcription, transla-

tion, modification, and other processes that are inseparable from the

interactions between DNA/RNA and protein [1–4]. By understanding

the function of proteins in interactions, we can further understand the

mechanisms of related cellular processmechanisms, such as viral infec-

tions, or the design of new drug targets. For example, in the initial

research phase of the new type of coronavirus pneumonia (COVID-

19) caused by SARS-CoV-2 infection, one of the most urgent tasks is

to understand the mechanisms underlying the molecular interactions

between protein and viral RNA, which might promote virus replication

or facilitate host defense in infected cells [5,6]. Therefore, it is impor-

tant to understand the interactions between proteins and DNA/RNA.

Research methods to study the interactions between proteins

and DNA/RNA include experimental and computational techniques.

Experimental approaches for protein–DNA/RNA interactions, such as

electrophoretic mobility shift assay [7,8], chromatin immunoprecipita-

tion (ChIP) [9], X-ray diffraction crystallography, and UV-crosslinking

immunoprecipitation, are usually time-consuming and costly [10,11].

Therefore, computational methods have become increasingly popular

in the field of bioinformatics since the 1990s owing to the development

of machine intelligence methods in the era of artificial intelligence

(AI).

AI has been rapidly and radically changing in various areas of

industry and our lives as AI technology is flourishing and demanding.

The field of bioinformatics, which aims to improve our understanding

of biological data by developing methods, tools, and software, is a

major benefactor of the recent advancements in AI. Because of the

application of AI technologies to bioinformatics [12,13], computational

methods for the prediction of interactions between proteins and

DNA/RNA have undergone a developmental process from traditional

machine learning to deep learning. This review focuses on computa-

tional approaches and tools using machine intelligence techniques

to understand protein-DNA/RNA interaction. We summarized the
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machine learning (deep learning) approaches that can be utilized

to predict interactions between protein and DNA/RNA, including

their advantages and shortcomings, applications in tasks related to

the protein–DNA/RNA interactions, and possible future application

trends.

2 COMPUTATIONAL METHODS IN THE ERA OF
AI: FROM MACHINE LEARNING TO DEEP
LEARNING

2.1 Development process for computational
methodsin the AI era

Computational approaches can be classified into sequence and

structure-based methods. Because three-dimensional (3D) protein

structure is generally more conserved and has more information com-

pared to the amino acid sequences (primary structures), structural sim-

ilarity is a good indicator of similar functions among proteins. More-

over, structure-based methods usually perform better than sequence-

basedmethods. Structural information, such as accessible surface area

(or solvent-accessible surface area), secondary structure (including

hydrogen-bonding potential, helical conformation, etc.), can be utilized

as feature vectors for protein function prediction. These structural

feature data are typically obtained through DSSP algorithm and pro-

tein databases such as Protein Data Bank (PDB). Structural features

separately or combined with sequence-based features are commonly

employed for protein function prediction models including statistical

models and machine learning-based models that uses computational

algorithms such as statistics singular value decomposition algorithms

[14] andmachine learning algorithms (e.g., naive Bayesianmethod, ran-

dom forest) [15,16]. However, structures are not available for most

proteins. When the structure of a target protein has not yet been

experimentally determined, computational structure prediction meth-

ods can be applied to model the 3D structure. However, this approach

cannot obtain good accuracy when homologous templates are not

available at the early stage. Thus,many sequence-based computational

methods have been developed.

In the era of AI, the sequence-based computational methods in pro-

teomics have roughly gone through a process from homology-based

methods andmachine learning-based methods to deep learning-based

methods. Homology-based methods predict the function of a protein

by computing the similarity between biological sequences (sequence

identity). Sequences with high similarity are generally considered to

have similar functions. Sequence similarity can be computed using

multiple sequence alignment tools (e.g., BLAST [17]) or by search-

ing databases, such as the UniProtKB database [18], Gene Ontology

database [19], Pfam [20], and PROSITE [21], in which the entries can

be used for protein functional prediction. However, for some specific

tasks, the homology-basedmethod is not realistic when few databases

of target sequences are available.

Owing to the continued development of AI techniques and the

increasing maturity of machine learning algorithms, machine learn-

ing algorithms have become increasingly popular in sequence-based

computational methods for the prediction of protein–DNA/RNA inter-

actions. In the 2000s, traditional machine learning methods, such as

support vector machine (SVM), decision trees, naïve Bayes classifier,

random forest [22,23], and logistic regression, were most popular.

These algorithms cannot be directly applied to raw data (biological

sequences). Instead, a preprocessing step called feature extraction is

required. This step requires human experts to have a detailed knowl-

edge of the task, adaptation, testing, and refinement over several iter-

ations. Therefore, machine learning is considered more dependent on

manual human intervention.

Due to the limitations of traditional machine learning methods and

arrival of the big data era, deep learning methods, a subset of machine

learning, has gradually surpassed traditional machine learning meth-

ods. Since 2005, deep learning has brought large changes to AI; in gen-

eral, deep learning has driven many AI applications and services that

improve automation by performing analytical and physical tasks with-

out human intervention [24,25]. Deep learning is essentially a neu-

ral network with several neural network layers (three or more layers)

and large-scale training datasets. Precisely because of the deeper neu-

ral network layers and larger training datasets, deep learning-based

applications typically outperform traditional machine learning-based

models. In the past decade, as a large amount of biological data have

become available [26,27], deep learning approaches have been widely

utilized in proteomics [28,29]. In one study [28], convolutional neural

networks (CNNs) were used to predict the sequence specificities of

DNA-andRNA-bindingproteins usingprimarybiological data.Another

study [30] presented a prediction algorithm for prediction protein sub-

cellular localization using CNN and a recurrent neural network (RNN)

only from sequences. Hashemifar et al. [31] presented a deep learn-

ing framework for predicting protein–protein interactions based on

amino acid sequences, in which protein sequence pairs are projected

onto a representation by convolutional modules. Kulmanov et al. [32]

developed a novel classifier for protein functional prediction based on

sequence and interaction information, in which sequence data were

represented as trigrams of amino acids and embedded through CNN

layers.

2.2 Categorization of computational methods

Classical machine learning (deep learning) can be categorized into four

basic approaches, unsupervised learning, semi-supervised learning,

supervised learning, and reinforcement learning [33]. The type of algo-

rithm you chosen depends on the type of data available. In supervised

learning, labeled inputs and targets (desired outputs) are required to

train the algorithm. Supervised learning algorithms are usually suitable

for classification tasks (binary or multiclass classification), regression

problems (prediction of continuous values), and ensemble models

(combinations of multiple machine learning models). Frequently used

algorithms in supervised learning include SVM, random forest, and

logistic regression. They are popular in protein functional predic-

tion, such as diverse types of protein binding [34–36]. Unsupervised
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learning refers to training with unlabeled data to group data into

subsets by sifting through unlabeled input data. It is good for the

clustering tasks (grouping dataset based on similarity) and dimen-

sionality reduction, among other tasks. Dimensionality reduction

algorithms (unsupervised learning), such as principal component anal-

ysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE),

are commonly used for protein sequence feature visualization [37–39].

Semi-supervised learning refers to the training of a model with a small

amount of labeled data, which is then used for the new unlabeled data.

Semi-supervised learning algorithms can not only avoid the disadvan-

tage of labeling data (expensive and cost time), but also be used to

implement the improvements in algorithm performance brought about

by training with labeled data. The size of protein database shows an

explosive growth because of new sequencing technologies. However,

the development of annotated subsets lags far behind due to the high

cost of acquiring meaningful labels and annotations. Therefore, semi-

supervised protein representation learning has emerged as an import

pattern in protein modeling [40]. Reinforcement learning, which is a

goal-oriented learning method rather than classifying or clustering

data, is usually utilized with deep learning. It can be considered as

an embedded framework in deep learning. For example, the famous

AlphaGO [41] and AlphaFold [42], provided by DeepMind lab, have

demonstrated that reinforcement deep learning (combining reinforce-

ment learning with deep learning) is applicable in game playing and

protein folding problems.

3 COMPUTATIONAL APPROACHES UTILIZED IN
PROTEIN–DNA/RNA INTERACTIONS-RELATED
TASKS

The process of predicting protein–DNA/RNA interactions using com-

putational methods can be roughly summarized as follows: (1)

sequence data digitization, (2) model construction and training, and (3)

prediction. In the era of AI and big data, machine learning (deep learn-

ing) methods have beenwidely used in tasks related to theDNA/RNA–

protein interactions (Figure 1).

The computational model for prediction should be designed accord-

ing to the principles of the algorithms introduced previously herein and

the characteristics of the available data. Generally speaking, traditional

machine learningmethod-based schemes are chosenwhen the amount

of data is small; deep learning can be utilized when large amounts of

data are available. This is because the accuracy usually increases with

an increasing amount of training data in deep learning models, and

models can be scaled better with a larger amount of data, whereas tra-

ditional machine learning models might stop improving after a satura-

tion point [43]. In addition,with thedevelopmentAI andmachine learn-

ing (deep learning), diverse frameworks and AI tools have been estab-

lished, such as Scikit Learn [44], Keras [45], PyTorch [46], Tensorflow

[47], Theano [48], andWeka software [49], amongothers. These frame-

works can be used to construct task models using machine learning

(deep learning) algorithms. Further, they can be chosen depending on

what best meets the desired requirements.

Sequence digitizing refers to converting the biological sequences to

numerical data (e.g., vectors) that can be used as input for computa-

tional models. In traditional machine learning-based prediction mod-

els, the extracted features are usually selected to compose the digi-

tized representation of sequences. For deep learning-based prediction

models, digitized sequences are acquired by sequence representation

learning (sequence encoding or embedding), either together with the

training of themodel or by utilizing a deep neural network-based learn-

ing model. Sequence data digitization is the first necessary step. In this

section, we focusmainly on the types of sequence digitizing schemes.

3.1 Feature representation for machine learning
models

In traditional machine learning models, such as SVMs, decision

trees and random forests, feature extraction should be preliminar-

ily conducted. In proteomics, composition information, physicochem-

ical properties (such as hydrophobicity, polarizability, volume, helix

probability, sheet probability, isoelectric point, and steric parameters)

of amino acids and protein evolutionary information (e.g., position-

specific scoring matrix, PSSM) can be manually acquired through the

third-party applications [50,51]. For example, Hwang et al. [34] devel-

oped a DNA-binding residue predictor by using three machine learn-

ing approaches, including SVM and two types of logistic regression

methods and PSSM to form feature vectors. Ballester et al. [52] pre-

sented a novel computational method for predicting protein-ligand

binding affinity using random forest and intermolecular interaction

features. Kong et al. [53] proposed an SVM-based classifier to assess

the protein-coding potential of a transcript using features extracted

from the nucleotide sequence of the transcript. Then, statistical mea-

sureswere determined to be required as follows: assign a score to each

of the extracted features, rank the features according to their scores,

and decide whether to keep the form feature vectors or remove them.

The extracted features are independent and univariate, and if feature

selection fails, themachine learningmodel will not performwell.

3.2 Deep learning-based feature learning

The process of protein-related prediction using a deep neural network-

basedmodel can be roughly described in three parts as follows: feature

representation of sequence data (sequence encoding or embedding);

model construct and training; and prediction outputs. The primary

biological sequences (such as amino acid sequences) can be directly

be used as inputs for the deep learning model, instead of relying

entirely on third-party applications to extract features to form a

numerical representation of the biological data, as in traditional

machine learning methods. The representation learning methods of

biological sequences can be categorized into several groups as follows:

end-to-end learning, LSTM-based representation learning (non-

contextual sequence embedding), and transformer-based sequence

representation learning [54]. Except for graph computation-based
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F IGURE 1 Machine learning algorithms frequently used in research related to the DNA/RNA–protein interactions. Abbreviations: AA, amino
acid; CNN, convolutional neural network; LR, Logistic regression; PSSM, position specific scoringmatrix; RF, random forest; RNN, recurrent neural
network; SVM, support vector machine.

representation and mixed representation, the other three representa-

tion methods have been applied in bioinformatics over time according

to their emergence in the field of natural language processing. One-hot

encoding as a typical encoding method of the end-to-end model has

been widely used for proteomics, such as the prediction of protein

function [32], prediction of protein subcellular localization [30], and

identification of disordered regions [55]. Subsequently, the ELMo

model and its variant models that are based on LSTM have been used

in proteomics research for sequence representation learning. For

example, Heinzinger et al. [37] utilized a bidirectional LSTM-based

model to learn sequence data for the prediction of protein function.

Alley et al. [39] proposed a unified representation for amino acid

sequences learned from a multiplicative LSTM-based model, and it

was proven that the representation model has the ability to signif-

icantly improve the efficiency of protein engineering tasks. More

recently, the transformer-based language model for natural language

processing, namely the bidirectional encoder representation from

transformers (BERT) [56,57], has attracted substantial attention

because of its excellent performance. The protein prediction tasks

based on primary sequences are similar to the tasks in the NLP field;
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therefore, the application of theBERTmodel to bioinformatics isworth

exploring.

In general, from traditional machine learning to deep neural net-

works, the flexibility and performance of the computational model

have gradually improved. However, there are still some problems in

deep learning-based biological sequence representation, such as the

lack of interpretability, which is currently one of the mainstream

research directions of deep learning and is widely regarded as a key

part of the next generation of AI technology. Therefore, representa-

tion learning based on deep learning for biological data should con-

sider strategies for an interpretable deep neural network. Deep neu-

ral networks are habitually considered black box models, from which

model parameters andhigh-fit identification results are acquired.How-

ever, in addition to the final identification results, the output results

based on the knowledge that themodel can learn from the data should

also be considered. Two types of interpretation strategies for deep

learning can be considered, specifically post hoc interpretability anal-

ysis and ad hoc interpretable modeling. The former refers to interpret-

ing the trained model, whereas the latter refers to the design of an

interpretable model from scratch. For biological data representation

in proteomics, feature analysis techniques, such as the visualization of

learned features (characteristics of neurons and layers of neural net-

works) as post hoc interpretability analysis, are more suitable. Aiming

for an ad hoc interpretable modeling strategy (interpretable represen-

tation) to represent biological data, it can be suggested thatmixed data

representations, such as sequence and structure information, are used

for data representation, integrating traditional graph-based technolo-

gies into existing deep neural networks (such as CNN).

In recent years, the emergence of AlphaFold [58] has resulted in

considerable advances in protein structure prediction, and a series of

highly reliable protein structure computationalmodelsmake structural

information available [59–61]. Recently, free access to the AlphaFold

protein structure database [42] (developed by DeepMind and EMBL-

EBI) has been provided. The AlphaFold database covers the most com-

plete and accurate high-quality predictions of the whole protein struc-

ture of the human proteome and 20 other key organisms. Therefore,

highly reliable protein structure data acquired from the database can

be used for proteomics tasks, especially for the feature representation

of biological data, which might have important implications for protein

engineering.

4 APPLICATIONS IN TASKS RELATED TO
PROTEIN–DNA/RNA INTERACTIONS

Protein–DNA/RNA interaction-related research mainly includes iden-

tification of proteins that bind to DNA/RNA, prediction of binding

sites, and analysis of sequence specificities of DNA- and RNA-binding

proteins. In this section, we focus mainly on tools and approaches

developed on these three research topics, including types of biological

sequence representation (feature extraction), machine learning (deep

learning) algorithms used in these tools, andweb servers or code avail-

able provided by researchers, as shown in Table 1.

For model algorithms, shallow learning algorithms were used in the

early research works, among which SVM is almost the most widely

used method, followed by RF and logistic regression, etc. For instance,

RPISeq [62], mRMR-IFS-SVM [35], RPI-Pred [10], and StackDPPred

[11] utilize SVM algorithm to identify DNA/RNA-binding proteins;

SVM classifier and its variants are employed for the prediction of

binding sites, such as BindN [63], DP-Bind [64], DISIS [65], PiRaNhA

[36], and TriPepSVM [66]. Studies in recent years focus on deep learn-

ing algorithms, among which CNN and LSTM (bidirectional LSTM) are

extremely popular. Popular examples are the combinations of CNNand

LSTM, such as DeeperBind [67], DanQ [68], iDeep [69], and DeepGRN

[70]. In addition, a few deep learning algorithms, such as transfer learn-

ing, attentionmechanism-baseddeepneural network, and capsule neu-

ral network, have captured researchers’ attention lately. It is notewor-

thy that CNN also can combine with other deep neural networks such

as capsule neural network (CapsNet) and deep transfer learning net-

work. For example, iProDNA-CpasNet [71] conducts a computational

model that consists CNN layers and CapsNet layers for identifying

protein-DNA binding residues.

Regarding the sequence representation (feature extraction), in tra-

ditional machine learning models, protein sequences are usually digi-

tized using extracted features, such as PSSM (i.e., PWM), physicochem-

ical and biochemical properties (AA index), amino acid composition,

secondary structure information, and n-mer peptide (dipeptide and

tripeptide, i.e., n = 2 and 3, are commonly used); RNA sequences are

generally digitized as secondary structure and k-mer frequencies. n-

mer peptide and k-mer frequencies are actually the samematter, while

n-mer peptide (e.g., tripeptide) is frequently employed after group-

ing amino acids. Whereas, in deep learning models, the overwhelm-

ing digital representation of biological sequences is one-hot encoding

which is utilized independently or combinedwith PSSM and secondary

structure information. Hybrid feature representation might be deeply

explored in further research.

5 CONCLUSIONS AND OUTLOOK

In the era of AI and big data, the power of big data technology and

AI progress hand in hand with the development of computational

methods in bioinformatics. With the development of AI technologies

and the availability of large amounts of biological data, computational

methods for proteomics have undergone a developmental process

from traditional machine learning to deep learning. This review

focused on these computational approaches in proteomics, especially

for prediction tasks regarding protein–DNA/RNA interactions. We

summarized machine learning (deep learning) methods used in pro-

teomics, including advantages and shortcomings, and the types of

tasks they are suitable for. Moreover, biological sequence-digitizing

representation strategies used in different types of computational

methods are also summarized, and problems existing in biological data

representation methods that use deep learning were pointed out.

Besides, we compiled DNA/RNA–protein interaction-related predic-

tion tools and approaches, especially sequence representation (feature
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extraction) and model algorithms used in these applications. In the

era of AI and big data, further research might explore the combination

of different approaches for AI, such as combining deep learning with

reinforcement learning, deep learning with evolutionary methods,

as well as hybrid feature representation strategies as we suggested

previously herein.
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