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A B S T R A C T   

Increasing generation of municipal solid waste, heterogeneity of waste composition, and complex processes of 
waste management and recovery have limited the performance of traditional treatment approaches. It is urgent 
to innovate waste management toward smarter and more efficient modes and break up the bottlenecks of the 
current system. Recently, deep learning has emerged as a powerful method for revealing hidden patterns or 
deducing correlations for which traditional treatment approaches face limitations or challenges. However, deep 
learning concepts and practices have not been widely utilized by researches in municipal solid waste manage-
ment (MSWM). Herein, this research provides a critical review for deep learning and its application in MSWM. 
The framework and algorithms of a variety of deep learning methods have been compared and assessed. A body 
of deep learning applications have been reviewed according to their engagement in waste collection, trans-
portation, and final disposal. Application of deep learning in MSWM stays in its infancy and requires great efforts 
for further development. The challenges and futures opportunities in the application of deep learning in the 
MSWM have been discussed to highlight the potential of deep learning in this field.   

1. Introduction 

A lot of attention is currently devoted to machine learning (ML) 
methods in environmental fields (Zhong et al., 2021), such as water 
(Sagan et al., 2020), air (Bellinger et al., 2017), soil (Yaseen, 2021), and 
energy (Dounis and Caraiscos, 2009). Compared with these fields, the 
researches on employing ML and artificial intelligence (AI) in municipal 

solid waste management (MSWM) are less relevant. MSWM plays a 
crucial role in realizing the goals of sustainable development. The cur-
rent urbanization, rapid population growth, and economic de-
velopments result in large amounts of municipal solid waste (MSW), 
which needs to be treated and disposed of. The heterogeneity of the 
composition and complex mechanisms of MSW have limited not only the 
performance of conventional treatment approaches, which include 
classified recycling, landfilling, incineration, pyrolysis, gasification, 
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Abbreviations 

1-D One-Dimension 
2-D Two-Dimension 
3-D Three-Dimension 
AAPRE average absolute percent relative error 
AE average error 
AI Artificial Intelligence 
AARE Average Absolute Relative Error 
BP-NN Backpropagation- Neural Network 
CNN Convolutional Neural Network 
CH4 Methane 
CO2 Carbon Dioxide 
COD Chemical Oxygen Demand 
COVID-19 Corona Virus Disease 2019 
D Discriminator 
DNN-TC Deep Neural Networks for Trash Classification 
DBN Deep Belief Network 
DT Decision Tree 
EBGANs Energy-Based Generative Adversarial Networks 
FA Focus Attention 
FID Fréchet Inception Distance 
F-test Joint hypotheses Test 
G Generator 
GA Genetic Algorithm 
GANs Generative Adversarial Networks 
GIS Geographic Information System 
GPU Graphics Processing Unit 
HDPE High Density Polyethylene 
IoT Internet of Things 
IS Inception Score 
KNN K-Nearest Neighbor 
LDPE low density polyethylene 

LHV Lower Heating Value 
LSTM Long Short-Term Memory 
LSVRC ImageNet Large Scale Visual Recognition Challenge 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
MC Moisture Content 
MSE Mean Square Error 
MSW Municipal Solid Waste 
MSWM Municipal Solid Waste Management 
NLP Natural Language Processing 
NRMSE Normalized Root Mean Square Error 
PCA Principal Component Analysis 
PE Polyethylene 
PET Polyethylene Terephthalate 
PM Particulate Matter 
PP Polypropylene 
PS Polystyrene 
PVC Polyvinyl Chloride 
R Correlation Coefficient 
R2 Coefficient of Determination 
R–CNN Region- Convolutional Neural Network 
RE Relative Error 
ResNet Deep Residual Network 
RMSE Root Mean Square Error 
RNN Recurrent Neural Networks 
SBA Saliency-Based Attention 
SGANs Spatial GANs 
SS Suspended Solids 
SVM Support Vector Machine 
SVR Support Vector Regression 
TSS Total Suspended Solids 
VFA Volatile Fatty Acid 
VSS Volatile Suspended Solids  

Fig. 1. Keywords cloud about deep learning’s application in MSWM.  
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composting, and anaerobic digestion, but the management approaches 
and the collection. These approaches come with some limitations, which 
are becoming great challenges in the environmental field. For example, 
traditional waste sorting mainly relies on manual selection, which has 
some limitations, such as low efficiency and the potential risk of in-
fections, especially during the COVID-19 pandemic (Iyer et al., 2021). 
Also, in terms of waste transportation, improper and inefficient trans-
port plans and routes consume a lot of human, physical, and financial 
resources as well as increase greenhouse gas emissions (Nguyen et al., 
2020; Roberts et al., 2010). Moreover, incineration, pyrolysis, gasifica-
tion, anaerobic digestion and landfilling have potential explosion risks 
during operational processes (Cai et al., 2021). The issues mentioned 
above in the MSW field are urgent and need to be addressed for sus-
tainable management. 

Recently, deep learning has emerged as a powerful method for 
automatically learning feature representation from data, and it has been 
widely applied to many domains related to science, business, and gov-
ernment (LeCun et al., 2015). This method has shown excellent per-
formance in solving the problems of nonlinearity, time variation, 
multisource, and multiple targets (Xu et al., 2021). Therefore, deep 
learning has great potential to be applied in the MSWM field. However, 
deep learning concepts and practices have not been widely utilized by 
researches in MSWM. The aim of this feature is to introduce and 
compare deep learning algorithms as well as discuss the application of 
deep learning status, challenges, future opportunities of this tool in 
MSWM to highlight the potential of deep learning tool in the MSWM 
field. 

Fig. 1 shows a word cloud of the application of deep learning in 
MSWM, where the size of each word is proportional to its frequency. 
Scientific research has been established for deep learning applied in 
MSWM dated backed to 2005. Using the relevant keywords mainly 
included artificial neural networks, municipal solid waste/MSW gener-
ation, municipal solid waste/MSW amount prediction/forecast, 

municipal solid waste/MSW composition prediction, municipal solid 
waste/MSW classification, deep learning, convolutional neural net-
works/CNN, recurrent neural networks/RNN, long short-term memory/ 
LSTM, generative adversarial networks/GANs, landfilling, leachate, gas 
emission, incineration, composting, and anaerobic digestion in the 
indexed database of Web of Science, Derwent Innovations Index, KCl- 
Korean Journal Database, MEDLINE, Russian Science Citation Index, 
and SciELO Citation Index. 493 research articles were adopted in MSWM 
for the period of 2000–2021. 

This article mainly focuses on reviewing the employment of deep 
learning in MSWM, as shown in Fig. 2. Section 2 compares the differ-
ences between conventional ML and deep learning, introduced the 
progress of deep learning, and compared the advantages and limitations 
among some typical deep learning algorithms. Sections 3, 4, and 5 
summarize the deep learning techniques applied in the collection, 
transportation, final treatment, and disposal fields, respectively. Section 
6 discusses the challenges and perspectives of deep learning applications 
in MSWM. 

2. Deep learning 

It is noteworthy to clarify the relationship among AI, ML, and deep 
learning. AI was first put forward in 1956 by John McCarthy and Claude 
Shannon et al. (Crevier, 1993) who aimed to mimic human behaviors, 
such as making decisions, solving problems, processing images, videos, 
and speech. AI contains machine learning and deep learning, while deep 
learning is a subset of machine learning. 

2.1. Difference between conventional machine learning and deep learning 

ML includes conventional ML techniques, such as support vector 
machine (SVM), decision tree (DT), genetic algorithm (GA), and deep 
learning, which have great differences concerning extracting features. 

Fig. 2. Algorithms of deep learning and applications in MSWM.  
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Deep learning algorithms can automatically extract representations or 
abstractions from data (Bengio, 2009; Bengio et al., 2013; Najafabadi 
et al., 2015). A comparison of the performances of deep learning and 
conventional ML concerning input data is shown in Fig. 3. It can be 
observed that compared with conventional ML, the performance of the 
deep learning approach improved with the increase in input data. This is 
why deep learning approaches are becoming a hot research topic in the 
big data era. The differences between deep learning and conventional 
ML can be described in terms of applicability, robustness, generaliza-
tion, and scalability. 

State-of-the-art ML is sometimes called universal learning. Deep 
learning can be employed in almost any application domain (Alom et al., 
2019). While conventional ML has its limitations. High-dimensional 
informative data with noise or uninformative data constrain feature 
extractions by conventional ML due to the poor robustness of the con-
ventional ML methods (Zhang et al., 2021). In contrast, by automating 
the extraction of representations, deep learning algorithms have strong 
robustness to stand up against noise. In addition, the models based on 
shallow learning architectures, such as GA or DT, can easily fall short 
when trying to extract useful information from complex structures and 
relationships in input corpora (Najafabadi et al., 2015). While the 
state-of-the-art model can avoid this problem, its structures can be 
generalized in nonlocal and global ways. As for the generalization of 
deep learning, it has already been discussed in previous studies (Marco, 
2020; Zhou and Wang, 2020). In terms of scalability, deep learning 
approaches are highly scalable, and the classical convolutional neural 
network (CNN) structure like deep residual network (ResNet) takes a 
good example, which is often implemented at a supercomputing scale 
(He et al., 2016). In addition, Chauhan et al. provided a review on 
conventional ML versus deep learning (Chauhan and Singh, 2018). 

2.2. Taxonomy of deep learning 

Deep learning approaches can be classified into supervised learning, 
semi-supervised learning, and unsupervised learning. The dataset of 
supervised deep learning has been labelled. In other words, the system 
has a set of inputs and corresponding outputs (xt, yt). CNN and long 
short-term memory (LSTM) are the typical algorithms for supervised 
learning. While the training process of semi-supervised deep learning 
partially relies on labelled datasets. Generative adversarial networks 
(GANs) take a good example for semi-supervised deep learning. Finally, 
the environment of unsupervised deep learning does not have data la-
bels. Usually, this technology is applied in clustering, dimensionality 

reduction, and generative techniques (Alom et al., 2019). Supplemen-
tary materials (S1) introduced the progress of deep learning. 

2.3. Comparison of typical deep learning algorithms 

The framework and algorithms of a variety of deep learning methods 
have been described in Supplementary materials (S2). Table 1 shows a 
comparison of the typical deep learning algorithms in terms of their 
advantages and disadvantages. ANN, based on backpropagation, dem-
onstrates the outstanding capability of using less computational time 
and establishing highly nonlinear relationships among dispersed and 
noise additive data (Oliveira et al., 2019). However, the phenomena of 
overfitting or under-fitting limit the performance of the application of 
ANN. More like the human visual processing system, CNN has many 
advantages. For instance, it is more effective in learning and extracting 
the abstraction of 2-D and 3-D features and producing high weight 
sharing (Lin et al., 2021). Although CNN has become one of the most 
important models for image recognition and classification. Large 
amounts of datasets are used as a precondition for the good performance 
of CNN, which results in low training efficiency, increased computation 
and memory consumption, and longer run time. (Qiao et al., 2017). 

In contrast to the other algorithms, the LSTM can avoid the gradient 
degradation and explosion phenomena, and learn long-term temporal 
dependencies to learn high dimensional and continuous actions with 
credit assignment mechanisms focused on backpropagation (Yu et al., 
2019). However, the drawbacks of the LSTM model which include slow 
convergence, lack of ability of parallel computing, and disgraceful fail-
ure without warnings or explanation, cannot be neglected (Bram, 2007). 
In terms of attention-based models, they can effectively address the in-
formation overload problem and be used as available tools to explain the 
behaviors of incomprehensible neural architectures (Niu et al., 2021b). 
Finally, there are some major challenges in the training of GANs such as 
model collapse, non-convergence, instability, and complexity (Saxena 
and Cao, 2021). The merits of GANs are just using backpropagation 
rather than Markov Chain and updating the parameters in the generator, 
which is originated from the discriminator. This is mainly different from 

Fig. 3. Performance of conventional machine learning vs. deep learning and 
their data reliance (Alom et al., 2019). 

Table 1 
Comparison of the typical deep learning algorithms.  

Algorithms Advantages Limitations 

ANN (BP- 
NN)  

● Good performer for non-linear 
dataset  

● Less computational time  
● Work with noisy and incomplete 

data  

● Overfitting or 
underfitting  

● Black box 

CNN  ● Being more like the human visual 
processing system  

● Being effective at learning and 
extracting abstraction of 2-D and 
3-D features  

● Producing highly weights  

● Overfitting  
● Larger consumption of 

computation or memory  
● Longer run-time  
● Limitation of 

transparency and 
explanations 

LSTM  ● Avoid the problems of gradient 
degradation  

● Learning long-term temporal 
dependencies  

● Being able to learn high- 
dimensional and continuous ac-
tions with backpropagation’s 
focused credit assignment 
mechanism  

● Slow convergence  
● Lack of parallel 

computing  
● Failure spectacularly 

disgracefully without 
warning or explanation 

Attention  ● Solving the problem of 
information overload  

● Using as a tool to explain 
incomprehensible neural 
architecture behavior  

● Lack of interpretability 

GANS  ● Just using backpropagation 
rather than Markov Chain  

● Updating the parameters in G 
that was from D  

● Model collapse  
● Non-convergence  
● Instability  
● Complexity  
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other deep learning algorithms during the training process. Note that 
ANN, CNN, LSTM, attention, and GANs are considered as black boxes 
and that they constrain the model’s transparency and explanations. In 
addition, the indexes for the evaluation of various deep learning-based 
models’ performance are listed in Table S2 in Supplementary Materials. 

3. Application of deep learning in the MSW collection 

Fig. 4 demonstrates the publications that employed the deep learning 
approach in the collection of MSW. This section includes MSW amount 
prediction, the compositions of MSW forecasts, and MSW sorting. The 
previous studies on the ANN and CNN models show an upward trend, 
especially after 2015. Recently, the attention to deep learning algo-
rithms, such as GANs and attention neural networks has significantly 
increased, as shown in the bar chart (Fig. 4). 

Fig. 4 shows that the ANN model has been widely used in the pre-
diction of the amount and compositions of MSW and that the studies that 
applied the CNN model in waste sorting account for 89.61%, followed by 
ANN (6.49%), LSTM (2.56%), and GANs (1.34%). 

3.1. Amount and composition prediction of MSW 

The significant increase in the living standards in cities and rapid 
urbanization lead to large quantities of MSW generation (Dutta and 
Jinsart, 2020). It is now very challenging to select and implement waste 
management strategies and pollution control technologies, since the 
generation of MSW is complex and non-linear process, involving 
multiply factors (Yang et al., 2021). Therefore, it is crucial to accurately 
predict the amount and compositions of MSW in megalopolis to provide 
policymaking references and take proper measures in advance. Deep 

learning algorithms can be ascribed to a large number of nonlinear 
functions, consisted of neural network structure, attributing to the 
excellent performance of deep learning on prediction. In other words, 
these multilayer nonlinear functions allow networks to learn the 
complicated and abstract features between variables and targets. 
Therefore, more and more works of literature reported that deep 
learning algorithms are taken to predict the amount and composition 
predictions of MSW, as showed in Table 2. 

As summarized in Table 2, many researchers have applied the ANN 
model to predict the amount of MSW on different time scales, including 
weekly (Noori et al., 2009), seasonal (Azadi and Karimi-Jashni, 2016), 
and annual data (Oliveira et al., 2019). The coefficient of the ANN model 
determination ranges from 0.73 to 0.837, so it still has great room for 
improvement. Therefore, according to the data-driven characteristics of 
ANN models, some studies took some measures, such as more variates 
(Chhay et al., 2018) and enlarged time scales (Abbasi and Hanandeh, 
2016), to improve the performance of ANN models, which achieved a 
higher R2 (0.93–0.99), lower RMSE (0.002–450.84), MAE 
(0.001–228.53), and MAPE (0.07–0.0143). 

Also, other deep learning algorithms have recently been considered 
in forecasting the amount of MSW. Niu et al. used the LSTM algorithm 
combined with data ranging from January 2018 to December 2019 to 
predict the MSW amount in Suzhou, China, and the model achieved a 
coefficient of determination (R2) of 0.90 and an RMSE of 940 (Niu et al., 
2021a). Lin et al. have proved that the use of CNN, LSTM, and attention 
algorithms to predict the amount of MSW is feasible and practical (Lin 
et al., 2021). The result indicated that the correlation efficiency between 
the predicted and actual values for the attention, CNN, and LSTM al-
gorithm are 0.7806, 0.8641, and 0.8903, respectively. In addition, these 
three typical deep learning algorithms integration could enhance the 

Fig. 4. Application of deep learning in MSW collection. ANN: artificial neural networks; CNN: convolutional neural network; RNN: recurrent neural network; LSTM: 
long short-term memory; GANs: generative adversarial networks. 
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Table 2 
Application of deep learning in prediction of MSW amount and composition.  

Application Model Prediction content Region Input parameters Dataset Prediction Evaluation References 

MSW Amount ANN Forecasting the MSW generation in Tehran Iran Weekly time series of Waste generation 
in 2007 

One year of MSW amount R:0.837; AARE: 4.4% Noori et al. (2009) 

ANN Seasonal MSW generation rate in Fars 
province, Iran 

Iran Population; Frequency; Temperature; 
Altitude 

The year of 2009–2010 data for 
20 urban areas 

R: 0.86; MAPE: 8%; MAE: 
48.37%; NRMSE: 0.10; RMSE: 
68.32 

Azadi and 
Karimi-Jashni 
(2016) 

ANN Estimate the annual amount (kg/inhabitant/ 
year) 

Portugal Population; area; degree of urbanization; 
purchase power index; deprivation index 
and other 8 variables 

42 municipalities in Portugal in 
2015 

R2:0.73; 
Error: 10− 7–10− 3 

Oliveira et al. 
(2019) 

ANN MSW generation in Logan city Australia Waste generation from July 1996 to June 
2014 

Eighteen-year period from July 
1996 to June 2014 

R2:0.99; MAE:0.001; 
RMSE:0.002; MAPE:3.39E-6; 

Abbasi and 
Hanandeh (2016) 

ANN Forecasting the MSW generation in China China 8 socio-economic factors The year of 2000–2016 data from 
China statistical yearbook 

MAPE: 0.0143; RMSE: 450.84; 
MAE: 228.53; R2: 0.931 

Chhay et al. (2018) 

ANN Predicting the MSW generation in Haryana, 
India 

India Time series about MSW amount Data ranged from January 2010 
to December 2014 

MSE:0.0003714; RMSE: 
0.01927; R: 0.8385 

Singh and Satija 
(2016) 

LSTM Predicting the MSW amount in Suzhou, 
China 

China Time series 730 data from Jan. 1, 2018 to 
Dec. 31, 2019 

R2: 0.90; RMSE: 940 Niu et al. (2021a) 

Attention Predicting the amount of MSW in Shanghai China 24 socioeconomic factors Data ranged from 1990 to 
December 2018 

R2: 0.7806; MSE: 0.006 (train 
loss) 

Lin et al. (2021) 

CNN Predicting the amount of MSW in Shanghai China 24 socioeconomic factors Data ranged from 1990 to 
December 2018 

R2: 0.8641; MSE: 0.0086 (train 
loss) 

LSTM Predicting the amount of MSW in Shanghai China 24 socioeconomic factors Data ranged from 1990 to 
December 2018 

R2: 0.8993; MSE: 0.002 (valid 
loss) 

LSTM +
Attention 

Predicting the amount of MSW in Shanghai China 24 socioeconomic factors Data ranged from 1990 to 
December 2018 

R2: 0.935 

CNN +
Attention 

Predicting the amount of MSW in Shanghai China 24 socioeconomic factors Data ranged from 1990 to 
December 2018 

R2: 0.874 

CNN + LSTM Predicting the amount of MSW in Shanghai China 24 socioeconomic factors Data ranged from 1990 to 
December 2018 

R2: 0.0.944 

CNN + LSTM 
+ Attention 

Predicting the amount of MSW in Shanghai China 24 socioeconomic factors Data ranged from 1990 to 
December 2018 

R2:0.953; MSE: 0.031 and 0.057 
for train loss and valid loss, 
respectively 

MSW composition ANN Predicting the recyclables and garbage 
generation in Austin, USA 

USA The weekly amount of collected 
recyclables and garbage 

Weekly collected recyclables 
(2008–2018) 
Weekly collected garbage 
(2004–2018) 

Recyclables: 
MAPE: 10.92%~14.83%; 
Garbage: 
11.76%~16.51% 

Vu et al. (2019) 

ANN Predicting the proportion of organic 
fraction, ash and stone, paper, plastic and 
rubber, textile, wood, metal, glass, metal, 
and others 

China Gas coverage rate in a residential area, 
economic development level, 
geographical location, city size, and year 

Covered 292 cities in China MSE:0.002–0.057; 
R2:0.03–0.29; 
F:4.36–29.92 

Ma et al. (2020) 

ANN Forecasting the lower heating value (LHV) 
of municipal solid waste 

– The percentage of food, paper & 
cardboard, plastics, and wood 

250 datasets of waste 
composition from 67 cities in 40 
countries from 1970 to 2015 

MAPE:19.38% Wang et al. (2021) 

ANN Predicted LHV China The amount of wood, paper, kitchen 
garbage, plastics, and textile 

The actual composition of MSW 
from Beijing, Hongkong, and 
Shenzhen 

RE: 20.5% Xiao et al. (2009) 

Where AARE: average absolute relative error; MAPE: mean absolute percentage error; MAE: mean absolute error; MSE: mean square error; NRMSE: normalized root mean square error; RMSE: root mean square error; R: 
correlation coefficient; R2: coefficient of determination; RE: relative error; F: F-test. 
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performance of deep learning modules. 
The composition of MSW is also one of the most fundamental pa-

rameters in waste management. Usually, the calorific content of MSW 
directly depends on the composition of MSW, which is often used to 
evaluate the energy-harvest potential of MSW incineration (Xiao et al., 
2009). Table 2 reviews the studies that used the ANN model in the 
composition prediction of MSW in terms of macroscale and microscale. 

Vu et al. employed the ANN model combined with a geographic in-
formation system (GIS) to predict recyclables and the generation of 
garbage generation in Austin, USA (Vu et al., 2019). Results indicated 
that the value from ANN resulted in mean absolute percentage errors 
ranging from 10.92% to 16.51%. Also, in the ANN model established by 
Ma et al. the gas coverage rate in a residential area and other four factors 
(economic development level, geographical location, city size, and year) 
were used as inputted variates (Ma et al., 2020). This model was used to 
predict the proportions of organic fraction, ash, stone, paper, plastic, 
rubber, textile, wood, metal, glass, metal, and other materials in China. 
The values of MSE, R2, and F were found to be 0.002–0.057, 0.03–0.29, 
and 4.36–29.92, respectively. As for microscale MSW composition, 
studies were conducted using the amounts or percentages of various 
solid wastes to predict their lower heating values (LHV). However, only 
a few studies used deep learning algorithms to forecast the composition 
of MSW, and they showed the great potential of applying the deep 
learning approach in investigating the composition of MSW. 

3.2. Sorting of MSW 

The huge quantity of MSW generation calls for the proper classifi-
cation, collection, and recycling of MSW to reduce the quantity of ma-
terials sent to landfilling and increase the number of recyclable 
materials. However, conventional waste classification mainly relies on 
manual selection, which has some limitations, such as low efficiency, 
and the potential risk of infection, especially during the COVID-19 
pandemic (Iyer et al., 2021). With the development of computer hard-
ware, deep learning has become a solution to many problems, including 
the identification (Sheng et al., 2020), detection (Nowakowski and 
Pamula, 2020), and sorting (Chu et al., 2018) of waste. 

Training efficiency and accuracy, generalization, scalability, and 
robustness should be considered when selecting related algorithms to 
applied waste sorting machines. The training efficiency and accuracy of 
each algorithm for waste sorting would directly decide whether the al-
gorithms can be selected or not. Generalization is the ability of the al-
gorithm to adapt to fresh waste image samples. Due to the limitation of 
image samples, more powerful algorithms are expected to be found for 
wasting sorting. As for scalability, algorithms would be integrated with 
hardware, which revolved to the problem of scalability. In terms of 
robustness, the noise of the image sample would have a great harmful 
effect on the performance of the AI algorithms. Therefore, the factor of 
scalability also needs to be considered. 

Due to the involved thousands of parameters that need to be tuned, it 
is hard to make quick decisions about the optimal structure of CNN for 
specific applications. Transfer learning, which is a specific branch of 
deep learning, aims to transfer knowledge to new systems or structures 
(Pan and Qiang, 2010). It can accelerate learning processes and enhance 
model accuracy by avoiding most of the re-initialization effort needed to 
designed self-organizing CNN structures (Hu et al., 2016) and by auto-
matically deciding the structure size (Wang et al., 2019). Therefore, 
transfer learning has been applied to address waste sorting problems 
(Huang et al., 2020b; Vo et al., 2019). Also, many classic CNN structures 
have been proposed in the last decade (Girshick, 2015; Girshick et al., 
2016; Melinte et al., 2020; Redmon and Farhadi, 2017; Szegedy et al., 
2017). 

Fig. 5 shows an overview of a CNN framework that can be used in 
waste sorting, where CaffeNet is taken as an example. First, by loading 
the pre-trained model like CaffeNet, the fully connected layers and 
output dimensions can be modified according to the actual demands. 

Second, several preprocessing techniques, such as horizontal flip, 
random crop, and normalization can be taken to prepare the training, 
validation, and test dataset. In addition, Table 3 shows the open sources 
of waste images sorting datasets. Third, the model performs the fine- 
tuned process to learn the characteristics of the waste types from the 
training set and uses the validation set to select the model with the best 
accuracy. Finally, this model is used to predict the final output of each 
input image in the test set (Vo et al., 2019). 

Table 4 summarizes the previous studies that focused on employing 
deep learning approaches in the identification, detection, and classifi-
cation of waste. Notably, most of the relevant researches used CNN or 
integrated it with other networks to identify or classify solid waste. 
Trashnet data released by Thung and Yang in 2016 is often used to 
evaluate waste classification models (Thung and Yang, 2016). For 
example, Toğaçar et al. (2020) used the CNN algorithm and Trashnet, 
which include organic class (13,966 images) and recyclable class (11, 
111 images) to classify the solid waste as organic and recyclable cate-
gories. The result showed that the accuracy rate could reach 99.95%. In 
addition, by using the CNN algorithm to increase the number of training 
image data, and utilizing other models, such as SVM (Adedeji and Wang, 
2019) and multilayer perception (Chu et al., 2018), the accuracy rate of 
waste classification can be improved (Huang et al., 2020b). 

Some previous studies have focused on specific solid waste identifi-
cation materials such as plastic, metal, and textile waste. Images from 
the WaDaba database were categorized, including polyethylene tere-
phthalate (PET), high-density polyethylene (HDPE), polystyrene (PS), 
and polypropylene (PP) (Bobulski et al., 2021). The accuracy rate was 
found to be 74%, so there is still room to improve the performance of 
plastic sorting. CompostNet, a kind of CNN structure, was applied by 
Sheng et al. to categorize the food waste and the value of accuracy was 
just around 80% (Sheng et al., 2020). Liu et al. used the CNN algorithm 
to identify textiles based on the analysis of near-infrared spectroscopy 
and suggested that applying this approach can realize the automatic 
classification of several common textiles (Liu et al., 2019). However, 
more effects are still needed to improve the performance of the CNN 
algorithm with regard to the identification and sorting of waste. 

4. Application of deep learning in MSW transportation 

Fig. 6 and Table 5 show that only a few studies based on ANN and 
deep learning models focused on the transportation of MSW, and they 
mainly focused on route optimization, garbage classification systems, 
and waste detection of the equipment to reduce energy consumption. 

In terms of transportation route optimization, a GIS integrated with 
an ANN model was applied to optimize the waste collection route ac-
cording to the volumes of recyclables and garbage in various scenarios 
(Table 5). The results showed that compared with single and dual- 
compartment trucks, the dual-compartment trucks can save 
10.3–16.0% in travel distance and slightly reduce emissions (Vu et al., 
2019). Purkayastha et al. also used the ANN model to assess the allo-
cation of garbage collection bins (Purkayastha et al., 2019). This study 
could help countries locating collecting bins and enhancing the collec-
tion efficiency of garbage. 

The Internet of Things (IoT) technology was widely employed in 
waste classification. The MSW sorting system includes a waste classifi-
cation algorithm, cloud, waste bin, and an information detective system 
(Fig. 6). To establish an automatic question answering system for waste 
classification, Jiang et al. applied the CNN and RNN model to train a 
waste image classification and natural language processing (NLP) (Jiang 
et al., 2020). The accuracy rate, precision rate, recall efficiency, and F1 
were found to be 95%, 0.784–0.907, 0.791–0.898, and 0.787–902, 
respectively. A smart recycling bin with the help of the CNN algorithm 
was also invented by Baras et al. (2020), and it could make the accuracy 
rate reach 93.4%. 

For the detection of MSW, it was combined with a road sweeper, 
which is a popular machine that helps preserve the cleanliness of cities 

K. Lin et al.                                                                                                                                                                                                                                      



Journal of Cleaner Production 346 (2022) 130943

8

(Donati et al., 2020). The CNN algorithm was added to the road 
sweeper-operated system to save power energy. The experimental re-
sults showed that the waste identification system can save more than 
80% of the electrical power currently absorbed by such cleaning systems 
and that it also can prolong the lifetime of the used brushes. 

5. Application of deep learning in the final disposal of MSW 

MSWM involved in collection (the prediction of MSW amount and 
composition, MSW sorting, and material recovery), transportation, and 
final disposal. Landfilling, thermochemical processes, composting, and 
anaerobic digestion are common ways for the treatment and disposal of 
MSW. This section systematically reviews the deep learning approaches 
employed in these processes. Fig. 7 shows the number of publications on 

the disposal and recovery of MSW using deep learning approaches. 
Many previous studies used the ANN model to investigate the problems 
related to the disposal of MSW. RNN/LSTM was applied to study the 
behavior of gases in the cases of landfilling and anaerobic digestion. 
Also, CNN and GANs were employed to identify the abstract features in 
the incineration and composting technologies, and the relevant details 
are discussed in the following section. 

5.1. Sanitary landfills 

The advantages of sanitary landfills, such as lower investment and 
easy operation, make them widely applied to the final treatment and 
disposal of MSW. Nevertheless, the leachate and gas generation from 
landfills cannot be neglected. 

Table 3 
Open sources of datasets for waste image sorting or detection.  

No. Links No. categories No. subcategories No. images 

1 https://www.kaggle.com/techsash/waste-classification-data 2 (organic and recyclable) – 25,077 
2 https://aistudio.baidu.com/aistudio/datasetdetail/34554 4 (Hazardous; Organic; Recyclable; Residual) 114 >100,000 
3 https://aistudio.baidu.com/aistudio/projectdetail/2147105?channelType=0&channel 

=0 
4 (Hazardous; Organic; Recyclable; Residual) 40 >14,802 

4 https://github.com/garythung/trashnet 6 – 2,572 
5 http://tacodataset.org/stats 28 60 1,500 
6 http://wadaba.pcz.pl/ 7 (PET, HDPE, PVC, LDPE, PP, PS, and Other) 4 4,000 
7 http://www.slipguru.unige.it/Data/glassense_vision/ 7 136 2,000 
8 https://openlittermap.com/ 11 187 >100,000 
9 https://www.imageannotation.ai/litter-dataset 24 3 14,000 
10 https://github.com/datacluster-labs/Datacluster-Datasets 10 – >9,000 

Where PET: polyethylene terephthalate; HDPE: high-density polyethylene; PVC: polyvinyl chloride; LDPE: low-density polyethylene; PP: polypropylene; PS: 
polystyrene. 

Fig. 5. Overview of the CNN framework for waste sorting: a case of CaffeNet.  
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Fig. 6. Overview of deep learning application in MSW transportation.  

Table 4 
Application of deep learning in MSW sorting, recognition, and detection.  

Model Content Input Parameters Dataset Prediction 
Evaluation 

References 

CNN + Multilayer 
Perceptions 

Identifying recyclable waste 
(40 items) and other wastes 
(10 items) 

Labelled images 5,000 images Accuracy: 90% Chu et al. 
(2018) 

CNN Classification of organic and 
recyclable waste 

Labelled images 25,077 waste images (13,966 organic class; 11,111 
recyclable class) 

Accuracy: 
99.95% 

(Toğaçar 
et al., 2020) 

CNN Sorting plastic, paper, and 
metal 

Labelled plastic, 
paper, and metal 
images 

6,000 images Accuracy: 83% Sakr et al. 
(2016) 

CNN Identifying recyclable 
materials 

Labelled images 2,527 images (594 paper; 501 glass; 137 trash; 410 
metal; 482 plastic; 403 cardboard) 

Accuracy: 94% Aral et al. 
(2018) 

R–CNN Real-time waste 
identification 

Labelled images 2,527 images (594 paper; 501 glass; 137 trash; 410 
metal; 482 plastic; 403 cardboard) 

Accuracy: 
95.97% 

Melinte et al. 
(2020) 

CNN (VGG19, 
DenseNet169, 
NASNetLarge) 

Classifying garbage in the 
waste image dataset 

Labelled images One is a single waste image dataset with a total of 2,527 
images, and another dataset is manually collected with a 
total of 5,000 images. 

Accuracy: 96.5% Huang et al. 
(2020b) 

ResNet-50 (CNN)+
SVM 

Waste material classification 
system 

Labelled images 1,989 images including glass, paper, plastic, and metal Accuracy: 87% Adedeji and 
Wang (2019) 

DNN-TC Automatically classifying 
trash 

Labelled images One is a single waste image dataset with a total of 2,527 
images, and another dataset is manually collected with a 
total of 5,904 images contained organic, inorganic, and 
medical wastes. 

Accuracy: 94% Vo et al. 
(2019) 

CNN + PCA Plastic waste classification 
system 

PET, HDPE, PP, PS PET class: 33,000 images 
HDPE class: 36,000 images 
PS class: 37,440 images 
PP class: 3,380 images 

Accuracy: 74% Bobulski et al. 
(2021) 

CNN (CompostNet) Classifying for meal waste Labelled images 5,278 images Accuracy: 77.3% Sheng et al. 
(2020) 

CNN Textiles waste classification NIR spectroscopy 
from 780 to 2,526 
nm 

263 spectrum samples Recall rate: 0.95; 
Precision rate: 
0.96 

Liu et al. 
(2019) 

CNN (AlexNet) Recycled clothing 
classification system 

Internet of Things 3,300 clothing data Precision: 
53.33–74.20% 

Noh (2021) 

Where PET: polyethylene terephthalate; HDPE: high-density polyethylene; PP: polypropylene; PS: polystyrene; NIR: near infrared. 
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5.1.1. Leachate 
Table 6 reviews the deep learning approaches applied in landfilling 

from the perspectives of leachate, the behavior of landfill gas, and others 
pollutants. In terms of leachate, previous studies mainly focused on 
simulating the behavior of leachate (Azadi et al., 2016, 2018) and the 
removal of pollutants. 

It is a popular method to use experiments and the ANN model to 

investigate the treatment of landfill leachate. The values of R2 and RMSE 
between experimental and the predicted values were found to be 
0.941–0.984 and 1.45–2.52, respectively. Also, Azadi et al. used a 
similar method to optimize the treatment of landfill leachate (Azadi 
et al., 2018). It was considered that using the ANN model to predict the 
characteristics of landfill leachate, such as the COD load (Azadi et al., 
2016) and penetration (Bagheri et al., 2017). In addition, the RNN 

Fig. 7. Deep learning application in the disposal and recovery of MSW. ANN: artificial neural network; CNN: convolutional neural network; RNN: recurrent neural 
network; LSTM: long short-term memory; GANs: generative adversarial networks. 

Table 5 
Application of deep learning in MSW transportation.  

Application Model content Input parameters Dataset Result References 

Optimized 
route 

GIS-ANN- 
VRP 

Waste collection route 
optimization 

The volume of recyclables and garbage in 
different scenarios 

Weekly collected 
recyclables 
(2008–2018) 
Weekly collected 
garbage (2004–2018) 

10.3–16.0% travel 
distance saved 

Vu et al. (2019) 

ANN Assessment of collection 
bin allocation 

Population density, street width, and other 5 
variates 

1,000 MAE: 0.1092–0.1445 
RMSE: 
0.1787–0.2826 
R2: 0.9892–0.9982 

Purkayastha 
et al. (2019) 

Equipment CNN Automatic question 
answering system to waste 
classification 

Question about waste classification 9,272 items Accuracy rate: 95% 
Precision: 
0.784–0.907 
Recall: 0.791–0.898 
F: 0.787–902 

Jiang et al. 
(2020) 

U-Net 
(CNN) 

An energy-saving road 
sweeper 

Image 400 image pairs Save more than 80% 
electrical power 

Donati et al. 
(2020) 

CNN Smart recycling bin Entry Area-camera module-identification 
Unit-electromechanically controlled seal- 
waste storage-cloud 

2,527 images Accuracy rate: 93.4% Baras et al. 
(2020) 

ResNet-34 
(CNN) 

An automatic garbage 
classification system 

Hard hardware + classification algorithm 4,168 images Accuracy rate: 99% 
Reaction time: 0.95s 

Kang et al. 
(2020) 

Where MAE: mean absolute error; RMSE: root mean square error; R2: coefficient of determination; F: F-test. 
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algorithm was applied to forecast the removal of pollutants, such as the 
heavy metals in leachate (Çoruh et al., 2017). The R2 between the pre-
dicted and actual values was found to be 0.9687, and it was found that 
RNN has an excellent performance in lead removal. 

5.1.2. Landfill gas behavior and others 
From an environmental and safe perspective, the methane and odors 

in landfills need to be treated. Some previous studies (Behera et al., 
2014) employed the ANN model, data about the extraction rate of 
landfill gas, and the amount of landfill leachate to forecast the content of 
methane (Table 6). Ozcan et al. predicted the behavior of methane 
emission, and the values of R, RMSE, and MAE were found to be 0.81, 
1095, and 7.98, respectively (Ozcan et al., 2006). In addition, the risk of 
methane leak was identified by the pre-trained CNN model, which could 
detect the phenomenon of methane leak, and the detection accuracy 
could reach 99% (Wang et al., 2020). 

Moreover, the application of ANN in the estimation of landfill areas 
(Hoque and Rahman, 2020), forecasting of the surface temperature of 
landfilling (Hani and Nawras, 2019), prediction of compression ratio 
(Mokhtari et al., 2015), prognostication of compressive strength 

(Getahun et al., 2018), and computation of the seismic fragility analysis 
of geo-structures were discussed (Lagaros et al., 2009). Nevertheless, 
only a few studies reported the application of other deep learning 
models in landfilling disposal. It is suggested that there is great potential 
for employing deep learning in addressing the problems that exist in 
landfilling. 

5.2. Thermochemical process 

5.2.1. Incineration 
Table 7 lists the deep learning model applied in MSW incineration. 

The emission of dioxin, which is hazardous for human health (Berg et al., 
1999), needs to be considered during the process of MSW incineration. 
An ANN model integrated with a principal component analysis (PCA) 
was proposed by Bunsan et al. and it was applied to predict the con-
centration of dioxin emission by using data of waste loading, activated 
carbon injection frequency, and other 21 factors based on 4-year 
monitoring data of an incinerator in Taiwan (Bunsan et al., 2013). The 
conditions of the combustion regimes have a direct influence on the 
formation of dioxin. Tokarev et al. (2018) and Groβkopf et al. (2021) 

Table 6 
Application of deep learning in sanitary landfilling.  

Application Model Content Input Parameters Dataset Prediction 
Evaluation 

References 

Leachate ANN-GA Optimizing the treatment 
of landfills leachate 

pH, tungsten content, calcination 
temperature, and exposure time 

The number of datasets:150 R: 0.98–0.99 
MAPE: 0.04 
NRMSE: 0.03–0.05 

Azadi et al. 
(2018) 

ANN Predicting leachate COD 
load 

Number of days after waste 
deposition; rainfall; bottom CCL 
thickness; top cover thickness; top 
CCL thickness 

63 datasets R: 0.98–0.99 
MAPE: 
23.21–58.24 
NRMSE: 0.02–0.04 
RMSE: 
39.03–94.03 

Azadi et al. 
(2016) 

ANN-Fuzzy- 
Logic 

Predicting leachate 
penetration 

Hardness, turbidity, the concentration 
of Fe, Pb, Cr, and other 9 elements 

Leachate concentrations at 
the depth of 20 m from 2005 
to 2015 

R2: 0.9998 Bagheri et al. 
(2017) 

RNN Lead removal from sludge 
leachate 

Dosage, contact time, and 
temperature 

The training data is 120 R2: 0.9687 Çoruh et al. 
(2017) 

Gas 
behavior 

ANN Methane content Landfills gas extraction rate and 
landfills leachate 

130 set of data points R: 0.7112–0.7898 
MAPE: 
2.1075–3.1862 

Behera et al. 
(2014) 

ANN Prognosticating methane 
emissions 

CO2, O2, and temperature 7 different points of the area 
during July 2002–April 2003 

R: 0.81 
RMSE: 1095 
MAE:7.98 

Ozcan et al. 
(2006) 

CNN Detecting methane 
emissions 

Labelled leak images 1M labelled videos of 
methane leak images 

Detection accuracy 
reached 99% 

Wang et al. 
(2020) 

ANN-GA Simulating gas generation 
and transport 

CH4, CO2, O2, and static pressures 1100 data points R2: 0.924–0.941 Li et al. (2011) 

Others ANN Landfills area estimation Trip numbers and monthly 5 years of solid waste landfills 
data 

R2: 0.849–0.915 Hoque and 
Rahman 
(2020) 

ANN Predicting landfills surface 
temperature 

Ambient air temperature, humidity, 
wind velocity, evaporation, waste 
amount, and emitted methane 

54 landsat satellite images 
time series covered: 
1985–1992 and 2000–2016 

R: 0.884 Hani and 
Nawras (2019) 

ANN MSW compression ratio Dry unit weight, dry weight water 
content, and organic materials 

64 oedometer tests R: 0.90–0.904 
MAE: 
0.0235–0.048 
RMSE: 
0.0515–0.0602 

Mokhtari et al. 
(2015) 

ANN Predicting compressive 
strength and tensile 
splitting strength 

Water, cement, rice husk ash, and 
other 12 factors 

66 runs R2: 0.9811–0.9902 
MAE: 0.481–0.055; 
AE: 0.019–0.123; 
MAPE: 
2.088–2.905 
RMSE: 
0.072–0.648 

Getahun et al. 
(2018) 

ANN-Monte- 
Carlo- 
simulation 

Computing seismic fragility 
analysis of geo-structures 

The unit weight, friction angle, 
cohesion, and other 3 factors 

2800 set of data points R2: 0.994–0.999 Lagaros et al. 
(2009) 

Where AE: average error: ANN-GA: artificial neural network based genetic algorithm; ANN-Fuzzy-Logic: artificial neural network based fuzzy logic algorithm MAPE: 
mean absolute percentage error; MAE: mean absolute error; MSE: mean square error; NRMSE: normalized root mean square error; RMSE: root mean square error; R: 
correlation coefficient; R2: coefficient of determination; RE: relative error. 

K. Lin et al.                                                                                                                                                                                                                                      



Journal of Cleaner Production 346 (2022) 130943

12

applied the CNN algorithm with label images to monitor combustion 
regimes, and they could effectively reflect the burner state. In addition, 
Huang et al. proposed the GANs structure to measure the burden surface 

of a furnace with 7,510 3-dimension burden surface images, and results 
showed that the values of accuracy and RMSE was found to be 0.90 and 
0.099 (Huang et al., 2020a), respectively. 

Table 7 
Application of deep learning in MSW incineration.  

Application Model Content Input Parameters Dataset Prediction Evaluation References 

Incineration ANN- 
PCA 

Predicting dioxin emission Waste loading, activated carbon injection 
frequency, and other 21 factors 

4-year monitoring data 
of an incinerator in 
Taiwan 

R2: 0.998 Bunsan et al. 
(2013) 

CNN Monitoring combustion 
regimes 

Label data 10,000 images Average accuracy: 
97.9% 

Tokarev et al. 
(2018) 

CNN Burner flame 
segmentation 

Label images 3,000 images Intersection over 
union metric ≥ 0.7 

Groβkopf et al. 
(2021) 

GANs Measuring the burden 
surface of the furnace 

3D burden surface images 7,510 images Accuracy: 0.90 
RMSE: 0.099 

Huang et al. 
(2020a) 

LSTM Predicting the 
performance of the boiler 

Feedwater pressure, feedwater temperature, 
conveyor speed, and incinerator temperature 

215 data point MAPE: 1.14–4.21 Shaha et al. 
(2020) 

ANN Evaluating the heating 
values of burning MSW 
online 

The feeding rate of MSW and coal, average bed 
temperature, the change rate of bed 
temperature, and other 7 factors 

2,200 samples Training time: 4.85s 
Precision rate: 73.5% 

You et al. 
(2017) 

ANN Predicting Cr adsorption 
efficiency 

pH, initial concentration, contact time, dosage 32 samples R2: 0.878–0.999 
MSE: 0.0002–0.0093 

Asl et al. 
(2013) 

ANN- 
GA 

Forecasting particle size 
distribution 

Residence time, initial particle size distribution 
(d0, n0), IBA mass fraction 
Mass fraction of either small glass beads 
(0.2–0.6 mm) or large glass beads (1.7–2 mm) 

281 samples R2: 0.9867–0.9938 
RMSE: 
0.0277–0.0355 

Farizhandi 
et al. (2016) 

Where ANN: artificial neural network; ANN-GA: artificial neural network based genetic algorithm; ANN-PCA: artificial neural network based principal component 
analysis algorithm; CNN: convolutional neural network; GANs: generative adversarial networks; LSTM: long short-term memory; MSE: mean square error; RMSE: root 
mean square error; R2: coefficient of determination. 

Table 8 
Application of deep learning in MSW recovery in terms of gasification and pyrolysis.  

Application Model Content Input Parameters Dataset Prediction 
Evaluation 

References 

Gasification ANN Predicted LHV The amount of wood, paper, kitchen 
garbage, plastics, and textile 

The actual composition 
of MSW from Beijing, 
HK, and Shenzhen 

Relative error: 
20.5% 

Xiao et al. 
(2009) 

ANN LHV of gasification products C, H, N, S, O, MC, ash, ER, Tg 57 datasets R2: 89.94–99.25% 
MSE: 
0.00077–0.00496 

Pandey et al. 
(2016) 

RNN/LSTM Detecting anomalies in a 
thermal furnace 

Temperature, the concentration of 
oxygen and carbon dioxide 

9 collective anomalies 
time series 

– Sergey and 
Butakov 
(2018) 

GRU-auto-encoder 
(RNN) 

Detecting abnormal 
operating conditions of 
steam drums in a 
gasification plant 

Steam drum feedwater flow, out 
steam flow, and other 15 factors 

10,080 samples Accuracy rate: 
0.935–0.9875 
MAE: 0.136–0.601 

Ma and Li 
(2020) 

ANN-heterogeneous 
pruning ensemble 

Predicting liquid ammonia 
yield 

Outlet gas temperature of ammonia 
cooler and other 10 factors 

5,394 samples MRE: below 2.5% Dai et al. 
(2020) 

LSTM Forecasting air 
concentration 

Gas flow, airflow, secondary 
airflow, and other 2 factors 

40,000 samples MSE: 
0.00041–0.08812 

Ke et al. 
(2017) 

Pyrolysis 1D-CNN Calculating pyrolysis kinetic The data about thermos-gravimetric 
analyses 

600 pairs of relevant data 
(E, A) 

Accuracy: over 
97.6% 

Kuang and Xu 
(2018) 

CNN Computing pyrolysis kinetic 
modeling 

The data about the kinetic model 2,500 input-output pairs AE: less than 3% Hua et al. 
(2018) 

Res50-UNet (CNN) Pyrolysis reactor monitoring The RGB-colored infrared images 5,000 photos Accuracy rate: 
0.929 

Zhu et al. 
(2019) 

ANN Effluent prediction in steam 
cracking modeling 

Temperature, pressure, the product 
ratio of ethylene to ethane, 
propylene to ethylene, methane to 
propylene 

272 detailed industrial 
naphtha composition 

MSE: 0.05–2.40 Plehiers et al. 
(2019) 

ANN Predicting the biochar yield Pyrolysis temperature, heating rate, 
holding time, moisture content, and 
sample mass 

33 experimental data APRE: 0.1395 
AAPRE: 3.8615 
RMSE: 0.4638 
R2:0.9056 

Cao et al. 
(2016) 

RNN/LSTM Investigating pyrolysis 
behavior 

Flow rate, pressure, temperature 12,000 samples MSE: 0.008 ±
0.0013 
R2: 0.939 ± 0.012 

Zhang et al. 
(2019) 

Where AAPRE: average absolute percent relative error; AE: average error; ANN: artificial neural network; ANN-heterogeneous pruning ensemble; APRE: average 
percent relative error; CNN: convolutional neural network; GRU-auto-encoder: gate recurrent unit based auto-encoder; MAPE: mean absolute percentage error; MAE: 
mean absolute error; MSE: mean square error; MRE: mean relative error; Res50-UNet: Res50 based UNet structure; RMSE: root mean square error; R2: coefficient of 
determination; 1D-CNN: 1 dimension-convolutional neural network. 
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In addition, the LSTM algorithm was also employed in predicting the 
performance of boilers (Shaha et al., 2020). In terms of the calorific 
content of MSW, You et al. evaluated of heat values of burning MSW 
online by using the ANN model, and they considered parameters such as 
the feeding rate of MSW/coal and other 8 factors (feeding rate of coal, 
average bed temperature, change rate of bed temperature, furnace outlet 
gas temperature, steam temperature, steam pressure, primary air flow, 
and secondary air flow) (You et al., 2017). An ANN model was also used 
to analyze fly ash indicators, such as heavy metals (Asl et al., 2013) and 
the distribution of particle size (Farizhandi et al., 2016). 

5.2.2. Gasification and pyrolysis 
Deep learning applied in gasification and pyrolysis are listed in 

Table 8. For MSW gasification, as shown in Table 8, the previous studies 
mainly focused on the prediction of the low LHV (Pandey et al., 2016; 
Xiao et al., 2009), detection of anomalies in the process of gasification 
(Ma and Li, 2020; Sergey and Butakov, 2018), and forecasting the 
products (Dai et al., 2020; Ke et al., 2017). 

Deep learning algorithms are the data-driven model that has been 
considered as effective methods for modeling chemical processes (Peng 
et al., 2017; Yan et al., 2014). Also, they play a crucial role in quality 
monitoring and production safety, including MSW gasification and py-
rolysis disposal (Table 8). Kuang and Xu (2018) and Hua et al. used one 
dimensional and two dimensional CNN models to calculate the kinetic 
parameters of pyrolysis, respectively. The CNN algorithm was also 
applied to monitor the conditions of the reactor, and the accuracy rate 
could reach 92.9% (Hua et al., 2018). Zhang et al. used the LSTM, which 
can remember the time series or sequence problems, to investigate the 
pyrolysis behavior with 12,000 samples concerning flowrate, pressure, 
and temperature, and the MSE and R2 were 0.008 ± 0.0013 and 0.939 

± 0.012, respectively (Zhang et al., 2019). 

5.3. Composting and anaerobic digestion of MSW 

5.3.1. Composting 
Fig. 8 overviews the deep learning method applied to composting. As 

known to all, the maturity of composting is a critical criterion for 
measuring the quality of composting products. Compared with the 
traditional biochemical test method, the deep learning method, which is 
time-saving and easy to use, can predict or identify the maturity of 
composting. Xue et al. proposed the application of CNN structures with 
nearly 30,000 images to different composting materials to realize the 
fast evaluation of the maturity of composting (Xue et al., 2019). Also, 
Kujawa et al. used a CNN to identify the maturity of composting and the 
classified error ranged from 0.51% to 17.77% (Table 9) (Kujawa et al., 
2019, 2020). The microbial enzymatic activity is crucial to MSW 
degradation. Chakraborty et al. applied an ANN model with 98 datasets 
of visible near-infrared diffuse reflectance spectroscopy to rapidly esti-
mate the composting enzymatic activity, and the R2 and RMSE were 
found to be 0.91 and 0.07–3.79, respectively (Chakraborty et al., 2014). 
The parameters, which impact the enzymatic activity of microorgan-
isms, were also discussed. An ANN model with 5,382 daily tuples con-
cerning the composting days, pH, composting temperature, moisture 
content, food waste, mature compost, sawdust, and soil was applied to 
predict the influential operational composting by Lin et al. (2016). It 
pointed out that the R2 between the predicted and actual values ranges 
from 0.892 to 0.974. 

In addition, gases like CH4, CO2, NH3 and H2S, are a serious concern 
in composting processes. The pollutants produced from compost also 

Fig. 8. Overview of deep learning application in composting.  
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cannot be neglected, and the ANN model was employed to determine the 
concentration of catechol in compost bioremediation (Tang et al., 2008). 
Finally, a data-driven model like RNN was used to improve the man-
agement of windrow composting systems (Bhattacharjee and Tollner, 
2016). 

5.3.2. Anaerobic digestion 
Anaerobic digestion is a kind of microbial conversion method that 

occurs in aqueous environments. Some benefits of anaerobic digestion 
make it more attractive than other available technologies (Appels et al., 
2011), for example, (i) it allows waste with high moisture levels without 
any pretreatment (Ward et al., 2008); (ii) the valorization of the biogas 
generated during the process of anaerobic digestion is energy efficient 
and environmentally friendly (Smet et al., 1999); (iii) the slurry can be 
utilized in agriculture as a fertilizer and organic amendment (Tambone 
et al., 2009). Fig. 9 and Table 9 overview the deep learning models 
applied to anaerobic digestion. These models mainly focused on pre-
dicting the production of biogas, methane, and lipase enzymes, as well 
as the measurement of the concentration of volatile fatty acid (VFA). 

Biogas, which consists of 65% CH4, 35% CO2, and other trace gases, 
such as H2S, H2, and N2, was prognosticated by data-driven models like 
ANN (Tufaner and Demirci, 2020), LSTM, 1D-CNN, and LSTM-1D-CNN 
(McCormick and Villa, 2019). This model showed an excellent perfor-
mance in the prediction of biogas production generation. Deep learning 
has great potential in addressing the challenges of anaerobic digestion. 
Chakraborty et al. proposed a deep belief network (DBN) model for 

measuring the concentration of VFA in real-time online (Chakraborty 
et al., 2014). DBN is one deep neural network and it can predict the VFA 
concentration by forming more abstract high-level representations of 
the combination of the low-level features from the datasets. It pointed 
out that this model is more precise than conventional methods. 

6. Challenges and future perspectives 

Deep learning has a potential to substantially increase the efficiency 
throughout the whole life cycle of MSWM. As what have been presented 
before, cases included but not limited to more accurate prediction of 
waste quantity and composition and intelligent sorting and identifica-
tion of MSW. During transportation, MSW can become traceable and 
anti-tampered with the aid of deep learning. It is also increasing applied 
in waste treatment to optimize process parameters and detect abnormal 
operation conditions. 

Nevertheless, application of deep learning in MSWM stays in its in-
fancy and requires great efforts for further development. First, deep 
learning is basically a data-driven approach and needs extensive infor-
mation to achieve state-of-the-art performance. In additional to con-
ventional engineering parameters, “big data” from macro-to meso- and 
micro-level, from producers to users, and from collection, trans-
portation, to treatment and recycling processes are to be gathered and 
integrated. It may handle data of numerical, textual, media, and other 
types. Numerical data, for example, socioeconomic statistic and physi-
cochemical properties are used for treatment plant development and 

Table 9 
Application of deep learning in composting and anaerobic treatment of MSW.  

Application Model Content Input Parameters Dataset Prediction Evaluation References 

Composting CNN Classification of 
compost maturity 

Images illuminated with visible light, 
ultraviolet light, and mixed visible 
and ultraviolet light 

1,312 Classification error: 
0.51%~17.77% 

Kujawa et al. (2020) 

CNN Identifying co-substrate 
composted with sewage 
sludge 

Label images 2,340 images (963 ×
648 pixels) 

Classification error: 
4.1%–11.0% 

Kujawa et al. (2019) 

CNN Predicting compost 
maturity 

Label images 31,863 Accuracy 
rate:0.995–0.997 

Xue et al. (2019) 

RNN Improving management 
of windrow composting 
systems 

Precipitation, air temperature, pond 
volume, material volume, TSS, BOD, 
NO3 

Time series data from 
nine years (2001–2009) 

R2: 0.98–0.99 
RMSE: 0.07–3.79 

Bhattacharjee and 
Tollner (2016) 

ANN Rapidly estimating 
compost enzymatic 
activity 

The reflectance spectra 98 datasets R2:0.91 
RMSE:13.38 

Chakraborty et al. 
(2014) 

ANN Catechol determination 
in compost 
bioremediation 

The time profile of the amperometry 
signal 

39 compost extract 
samples 

RMSE: 8.600–10.70 Tang et al. (2008) 

ANN Predicting compost 
parameters 

pH, temperature, and other 6 factors 5,382 daily tuples R2:0.892–0.974 Lin et al. (2016) 

Anaerobic 
Digestion 

ANN-PCA Evaluating methane 
yield 

pH, MC, total volatile, volatile fatty 
acids, total COD, and volume of 
biogas produced 

23 days detected data R2:0.732 Nair et al. (2016) 

ANN Prognosticating biogas 
production rate 

Reactor fill ratio, influent-effluent 
pH, influent-effluent alkalinity, 
organic loading rates, effluent COD, 
effluent TSS, effluent SS, VSS 

60 experimental data R2:0.985 
RMSE:217.4 
MAE:156 

Tufaner and Demirci 
(2020) 

ANN Optimizing lipase 
enzyme production 

pH, temperature, agitation speed, 
time 

– R2: 0.9918–0.9949 Selvakumar and 
Sivashanmugam 
(2017) 

Deep 
Belief 
Network 

Measuring the 
concentration of volatile 
fatty acids (VFA) 

pH, CH4, CO2, and other 5 factors 1,000 datasets RMSE:733.23–762.48 Chakraborty et al. 
(2014) 

LSTM Predicting biogas 
production 

Physical and chemical parameters (a 
total of 83 parameters) 

On-line measurements 
during 366 days of 
continuous operation 

RMSE:1.7% McCormick and Villa 
(2019) 

1-D CNN Predicting biogas 
production 

Physical and chemical parameters (a 
total of 83 parameters) 

On-line measurements 
during 366 days of 
continuous operation 

RMSE:2.6% 

LSTM-1-D- 
CNN 

Predicting biogas 
production 

Physical and chemical parameters (a 
total of 83 parameters) 

On-line measurements 
during 366 days of 
continuous operation 

RMSE:19.0% 

Where MAE: mean absolute error; R: correlation coefficient; R2: coefficient of determination; RMSE: root mean square error. 
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process optimization. Images and videos are required in waste sorting, 
semantic segmentation, and anomaly detection. To obtain and transfer 
these data, investment should be devoted not only to environmental 
industrial equipment, but to new IT infrastructure including wireless 
sensor networks and IoT devices. 

Moreover, there remains a knowledge gap between waste manage-
ment and data science. Waste management developed a large number of 
environmental science and engineering models which follow physical 
laws and simulate processes of mass balance, energy balance, me-
chanics, and chemical and biological reactions. These models are to be 
incorporated with data processing and analytics of machine learning, so 
that data science can truly serve waste management. 

It is worth noting that although a “black box” model is often labelled 
onto deep learning, an integration of actual engineering processes based 
on natural physical and chemical properties into the intelligent 
modeling can be accomplished. A good example is using visualization 
technologies, such as class activation mapping (CAM), and gradient- 
weighted class activation mapping (Grad-CAM) to clarify the mecha-
nism of CNN during the training process of MSW sorting (Selvaraju et al., 
2019). These approaches can make the “black box” become more 
transparent and interpretable. 

7. Conclusions 

This paper provides a comprehensive review of deep learning and its 
application in MSWM. Overviews of ANN, CNN, RNN/LSTM, Attention, 
and GANs and their algorithms as well as a comparison of them, are 
discussed. The application of deep learning was reviewed in terms of 
collection, transportation, and final disposals and recovery. Regarding 
to the collection of MSW, the ANN model was widely used in the pre-
diction of the amount and compositions of MSW, and the studies that 
applied the CNN model to waste sorting account for 89.61%, followed by 
ANN (6.49%), LSTM (2.56%), and GANs (1.34%). Although the CNN 
model achieved good performance in MSW sorting, more efforts still 

need to be made to improve the performance of the CNN algorithm 
concerning specific waste identification and sorting in terms of effi-
ciency and scalability. Regarding the transportation of MSW, the per-
formed studies mainly focused on route optimization, garbage 
classification systems, and waste detection for the equipment. However, 
the related studies to MSW transportation are still rather less, so there is 
great potential to using deep learning algorithms in solving the MSW 
transportation issues from the perspectives of energy economy and 
pollutants reduction. As for the final treatment and recovery processes, 
deep learning was used in the fields of sanitary landfills, incineration, 
gasification, pyrolysis, compost production, and anaerobic digestion. 
While the limitation of MSW data are becoming the biggest challenge for 
the performance of deep learning, there is potential for employing the 
IoT technology in obtaining and gathering the related valuable data, 
even in the processes of collection, transportation, final disposal and 
recovery. 
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