
61

Briefings in Functional Genomics, 20(1), 2021, 61–73

doi: 10.1093/bfgp/elaa030
Advance Access Publication Date: 2 February 2021
Review Paper

Sequence representation approaches
for sequence-based protein prediction tasks
that use deep learning

Feifei Cui , Zilong Zhang and Quan Zou
Corresponding author: Quan Zou, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu,
China, Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China, and Hainan Key
Laboratory for Computational Science and Application, Hainan Normal University, Haikou, China. Tel.: +86 170-9226-1008; E-mail: zouquan@nclab.net

Abstract

Deep learning has been increasingly used in bioinformatics, especially in sequence-based protein prediction tasks, as large
amounts of biological data are available and deep learning techniques have been developed rapidly in recent years. For
sequence-based protein prediction tasks, the selection of a suitable model architecture is essential, whereas sequence data
representation is a major factor in controlling model performance. Here, we summarized all the main approaches that are
used to represent protein sequence data (amino acid sequence encoding or embedding), which include end-to-end
embedding methods, non-contextual embedding methods and embedding methods that use transfer learning and others
that are applied for some specific tasks (such as protein sequence embedding based on extracted features for protein
structure predictions and graph convolutional network-based embedding for drug discovery tasks). We have also reviewed
the architectures of various types of embedding models theoretically and the development of these types of sequence
embedding approaches to facilitate researchers and users in selecting the model that best suits their requirements.

Key words: sequence representation; deep learning; protein sequence embedding; end-to-end learning; transfer learning

Introduction
Machine learning techniques for extracting knowledge from
data have been widely used in bioinformatics [1–8]. Traditional
machine learning models, which include support vector
machine (SVM), random forest (RF) and Bayesian networks, have
been initially applied, for example, to predict gene expression
and gene function from sequences; to identify DNA motifs
such as transcription factor binding sites; and to predict
protein–protein interactions, secondary structures, protein–
nucleic interactions and protein functions [9–26]. In these
models, feature extraction should be preliminarily conducted,
usually through other applications, and selected features

Feifei Cui received her PhD degree from the University of Tokyo, Japan. She is currently a postdoctoral researcher at the University of Electronic Science
and Technology of China. Her research interests include bioinformatics, deep learning and biological data mining.
Zilong Zhang is currently working as a postdoctoral researcher in the University of Electronic Science and Technology of China. He received his PhD degree
from the University of Tokyo, Japan in 2020. His research interests include single-cell sequencing data analysis, bioinformatics and machine learning.
Quan Zou is a professor at the Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China. He received his
PhD from Harbin Institute of Technology, PR China in 2009. He is a senior member of IEEE and ACM. His research is in the areas of bioinformatics, machine
learning and parallel computing.

© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

are used as input to machine learning programs. In protein
tasks, these features include protein amino acid composition
information, physicochemical properties of amino acids and
protein evolutionary information features, and they are used
as feature vectors to encode proteins [27, 28]. For the tradi-
tional machine learning approach of using extracted features,
preprocessing is required for learning based on statistical
measures to assign a score to each feature, and the features
are ranked according to their scores and are either kept to form
feature vectors that represent protein sequences or removed.
The feature extraction methods are typically univariate and
consider features independently. In this approach, if feature

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/20/1/61/6126091 by guest on 30 M

arch 2023

https://academic.oup.com/
http://orcid.org/0000-0001-7055-3813
http://orcid.org/0000-0002-4934-1258
http://orcid.org/0000-0001-6406-1142

62 Cui et al.

selection fails, the machine learning algorithm will not be able
to realize satisfactory performance. In addition, the extraction
of some features, such as the position-specific scoring matrix
(PSSM) [29], which is a type of protein evolutionary information
feature, requires substantial computation time. The protein
representation that use traditional machine learning based on
feature extraction are computationally complex and has some
limitations, therefore is typically suitable for small-scale data.

Deep learning, which is a flexible evolution of machine
learning, has recently become increasingly popular in bioinfor-
matics because it typically outperforms traditional approaches,
especially with large training datasets [30–32]. In recent years,
biological data have been available on a large scale; for instance,
the number of available protein sequences has increased
exponentially in the past decade (Supplementary Figure S1).
In contrast to traditional machine learning techniques, deep
learning approaches do not require third-party applications to
obtain feature information for sequence numerical representa-
tion. Instead, they can learn rich data representations directly
from raw input sequences.

Representation learning, also namely the amino acid
encoding or embedding in which sequence data are converted
to numerical vectors, influences predicting model performance
[33, 34]; therefore, a wide variety of sequence embedding
schemes, which are described in detail in Table 1, have been
used in protein prediction tasks. For example, a commonly
employed representation scheme, namely, one-hot encoding,
has been applied for the prediction of protein function [35] and
to protein classification prediction problems [36–39], such as
the prediction of nucleic binding proteins and protein motifs
and protein subcellular localization, and computer-aided drug
development. The word2vec technique [40, 41], which is a widely
used word-embedding method in natural language processing
(NLP), accepts a large corpus of text as input and assigns a
corresponding vector representation to each unique word in
the corpus; it has recently received substantial attention in
proteomics [42, 43] because words in similar contexts can be
embedded in similar vector spaces and a large-scale biological
data set can be regarded as a corpus. The doc2vec model [44],
which is an extension of word2vec, can learn embedding vectors
for entire sentences or documents and can be used to represent
biological sequences (e.g. DNA, RNA and protein sequences).
Previous studies suggest that the embeddings that are learned
from many types of variants of word2vec and doc2vec models
can be applied for prediction in universal binary classification
problems, such as disordered protein identification and protein
family classification, and for prediction in protein functional
problems, for example, for the prediction of properties of related
proteins [45]. More recently, a new language model for NLP,
namely, the bidirectional encoder representation from trans-
formers (BERT), was proposed by researchers from Google [46].
BERT attracted substantial attention upon publication due to its
state-of-the-art performance on many natural language under-
standing tasks. Within bioinformatics, BERT for biomedical text
mining, namely, BioBERT [47], significantly outperforms the
previous state-of-the-art models. Therefore, we can foresee the
application of BERT in other bioinformatics studies. Another
type of sequence representation learning method is a new
statistical representation that uses deep learning for protein
sequences, which was proposed by Alley. It can realize a unified
representation for protein engineering because the learned
representation of proteins is semantically rich and structurally,
evolutionary and biophysically grounded [48].

Nevertheless, to the best of our knowledge, in bioinformatics,
the protein sequence representation learning approaches have
yet to be comprehensively classified. Therefore, here, we
categorized sequence representation approaches that are
used in deep learning applications of protein tasks into four
groups: end-to-end learning-based sequence representation
approaches, non-contextual sequence embedding methods,
transfer learning-based sequence representation approaches
and other representation approaches for some specific tasks
(such as extracted features-based representations for protein
structure prediction [49, 50] or graph computation-based
representations for drug discovery tasks [51–53]), as presented in
Table 1. Moreover, we review the development of the sequence
representation technology and the architectures of types of
embedding models theoretically, and we compare the sequence
representation approaches of each group, for the purpose of
facilitating researchers and users in selecting the model that
best suits their requirement.

Overview of protein sequence
representation approaches
Deep learning applications in proteomics, such as predicting
protein–protein interactions or secondary structures from pro-
tein primary sequences, consist of three main parts: represen-
tation learning for amino acid sequences (amino acid encoding
or embedding), deep neural network architecture and prediction
outputs. Among these parts, the representation of sequence
data is a key step for machine learning-based protein predic-
tions [54, 55]. Four categories, namely, one-hot encoding-based
simple embedding mechanism as the representative for end-to-
end learning approaches (sequence representation in Figure 1a),
non-contextual embedding-based and transfer learning-based
representation approaches (both of them are the pretraining
sequence representation type as described in Figure 1b), and
other representation approaches that base on extracted fea-
tures or graph computation for some specific tasks, are formed
according to the learning mechanism of a various types of pro-
tein sequence representation models. The thing needs to be
explained is that the sequence-based protein prediction tasks
are similar to the problems of NLP, thus the representation learn-
ing approaches especially the representation approaches of the
first three groups have the benefit of the development of the lan-
guage model. Basically, except representation approaches of the
fourth group, from the emergence of end-to-end learning-based
representation methods to non-contextual embedding, and to
transfer learning-based representation, the protein representing
techniques can be described over the time.

In most traditional machine learning models for protein
tasks that has struggled for decades since 2000s, many types
of features are extracted by independent modules (in protein
tasks, features are manually extracted, such as protein sequence
attributes and physicochemical properties of amino acids) and
as input for the task model. The training of independent feature
extraction modules is conducted separately from the training
of the task model, and the result of each module substantially
affects the final task results. To address this problem, end-to-
end learning, which is a popular type of deep learning process in
NLP, is introduced for protein task modeling with the explosion
of the number of available protein sequences since the early
2010s. Then, to avoid the sensitivity to the training dataset that is
observed in the task architecture that uses end-to-end scheme,

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/20/1/61/6126091 by guest on 30 M

arch 2023

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bfgp/elaa030/-/DC1

Sequence representation approaches 63

Ta
b

le
1.

D
es

cr
ip

ti
on

an
d

sa
m

p
le

s
of

a
w

id
e

va
ri

et
y

of
se

q
u

en
ce

re
p

re
se

n
ta

ti
on

sc
h

em
es

R
ep

re
se

n
ta

ti
on

ty
p

es
R

es
ea

rc
h

to
p

ic
s

(t
as

ks
)

Se
q

u
en

ce
re

p
re

se
n

ta
ti

on
im

p
le

m
en

t

Em
be

d
d

ed
d

im
en

si
on

Ta
sk

m
od

el
ar

ch
it

ec
tu

re
R

ef
.

D
B

P
O

n
e-

h
ot

ve
ct

or
of

am
in

o
ac

id
s;

Em
be

d
d

in
g

la
ye

r

12
8

C
N

N
_L

ST
M

[3
6]

En
d

-t
o-

en
d

le
ar

n
in

g
(O

n
e-

h
ot

en
co

d
in

g
-b

as
ed

si
m

p
le

em
be

d
d

in
g)

Pr
ot

ei
n

fu
n

ct
io

n
an

d
cl

as
si

fi
ca

ti
on

PP
I,

H
LA

-I
I

p
ep

ti
d

e
in

te
ra

ct
io

n
O

n
e-

h
ot

ve
ct

or
of

am
in

o
ac

id
s;

Em
be

d
d

in
g

la
ye

r

1,
2,

4,
8,

16
,3

2
C

N
N

,L
ST

M
,

C
N

N
_L

ST
M

[3
0]

Pr
ot

ei
n

fu
n

ct
io

n
O

n
e-

h
ot

ve
ct

or
of

tr
ig

ra
m

s;
Em

be
d

d
in

g
la

ye
r

12
8

C
N

N
[3

5]

Su
bc

el
lu

la
r

lo
ca

li
za

ti
on

O
n

e-
h

ot
ve

ct
or

of
am

in
o

ac
id

s;
C

on
vo

lu
ti

on
al

la
ye

r

12
8

C
N

N
_L

ST
M

[3
7]

Pr
ot

ei
n

fa
m

il
y

cl
as

si
fi

ca
ti

on
,S

S,
d

is
or

d
er

ed
p

ro
te

in
id

en
ti

fi
ca

ti
on

n
-g

ra
m

s;
Sk

ip
-g

ra
m

10
0

SV
M

[4
2]

N
on

-c
on

te
xt

u
al

em
be

d
d

in
g

(s
h

al
lo

w
ar

ch
it

ec
tu

re
)

W
or

d
2v

ec
D

ru
g

d
is

co
ve

ry
:

p
ro

te
in

-c
om

p
ou

n
d

in
te

ra
ct

io
n

n
-g

ra
m

s;
Sk

ip
-g

ra
m

60
0

C
N

N
[4

3]

D
oc

2v
ec

Pr
ot

ei
n

fu
n

ct
io

n
al

p
ro

p
er

ti
es

:a
bs

or
p

ti
on

,e
n

an
ti

os
el

ec
ti

vi
ty

,
lo

ca
li

za
ti

on
n

-g
ra

m
s;

Sk
ip

-g
ra

m
64

G
au

ss
ia

n
p

ro
ce

ss
m

od
el

[4
5]

Pr
ot

ei
n

se
co

n
d

ar
y

st
ru

ct
u

re
:S

S,
lo

ca
li

za
ti

on
p

re
d

ic
ti

on
C

h
ar

C
N

N
;B

iL
ST

M
30

76
C

N
N

[6
1]

LS
T

M
-b

as
ed

re
p

re
se

n
ta

ti
on

(E
LM

o
an

d
d

er
iv

ed
m

od
el

)

St
ru

ct
u

re
,e

vo
lu

ti
on

ar
y

u
n

d
er

st
an

d
in

g,
p

ro
te

in
en

gi
n

ee
ri

n
g

(S
S,

co
n

ta
ct

p
re

d
ic

ti
on

,r
em

ot
e

h
om

ol
og

y
d

et
ec

ti
on

,
fl

u
or

es
ce

n
ce

la
n

d
sc

ap
e

p
re

d
ic

ti
on

,s
ta

bi
li

ty
la

n
d

sc
ap

e
p

re
d

ic
ti

on
)

U
n

co
n

te
xt

u
al

iz
ed

em
be

d
d

in
g;

B
iL

ST
M

30
68

C
N

N
_B

iL
ST

M
[6

6]

(C
on

ti
nu

ed
)

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/20/1/61/6126091 by guest on 30 M

arch 2023

64 Cui et al.

Ta
b

le
1.

C
on

ti
n

u
ed

R
ep

re
se

n
ta

ti
on

ty
p

es
R

es
ea

rc
h

to
p

ic
s

(t
as

ks
)

Se
q

u
en

ce
re

p
re

se
n

ta
ti

on
im

p
le

m
en

t
Em

be
d

d
ed

d
im

en
si

on
Ta

sk
m

od
el

ar
ch

it
ec

tu
re

R
ef

er
en

ce

Tr
an

sf
er

Le
ar

n
in

g

Pr
ot

ei
n

fu
n

ct
io

n
:

St
ab

il
it

y
of

d
es

ig
n

ed
p

ro
te

in
s,

fu
n

ct
io

n
al

ef
fe

ct
s

of
m

u
ta

ti
on

s,
p

h
en

ot
yp

e
of

d
is

ta
n

t
fu

n
ct

io
n

al
va

ri
an

ts

O
n

e-
h

ot
ve

ct
or

of
am

in
o

ac
id

s;
m

LS
T

M
10

24
m

LS
T

M
[4

8]

Tr
an

sf
or

m
er

-b
as

ed
re

p
re

se
n

ta
ti

on
d

(B
ER

T
an

d
d

er
iv

ed
m

od
el

)

B
io

m
ed

ic
al

te
xt

m
in

in
g

(B
io

m
ed

ic
al

n
am

ed
en

ti
ty

re
co

gn
it

io
n

,
bi

om
ed

ic
al

m
ed

ic
al

re
la

ti
on

ex
tr

ac
ti

on
,b

io
m

ed
ic

al
q

u
es

ti
on

an
sw

er
in

g

W
or

d
Pi

ec
e

to
ke

n
iz

at
io

n
;

M
u

lt
i-

la
ye

r
bi

d
ir

ec
ti

on
al

tr
an

sf
or

m
er

en
co

d
er

76
8

M
u

lt
i-

la
ye

r
bi

d
ir

ec
ti

on
al

tr
an

sf
or

m
er

en
co

d
er

[4
7]

St
ru

ct
u

re
,e

vo
lu

ti
on

ar
y

u
n

d
er

st
an

d
in

g,
p

ro
te

in
en

gi
n

ee
ri

n
g

(S
S,

co
n

ta
ct

p
re

d
ic

ti
on

,r
em

ot
e

h
om

ol
og

y
d

et
ec

ti
on

,f
lu

or
es

ce
n

ce
la

n
d

sc
ap

e
p

re
d

ic
ti

on
,s

ta
bi

li
ty

la
n

d
sc

ap
e

p
re

d
ic

ti
on

)

To
ke

n
em

be
d

d
in

g,
p

os
it

io
n

em
be

d
d

in
g

se
gm

en
t

em
be

d
d

in
g;

M
u

lt
i-

la
ye

r
bi

d
ir

ec
ti

on
al

tr
an

sf
or

m
er

en
co

d
er

76
8

M
u

lt
i-

la
ye

r
bi

d
ir

ec
ti

on
al

tr
an

sf
or

m
er

en
co

d
er

[6
6]

O
th

er
re

p
re

se
n

ta
ti

on
s

Ex
tr

ac
te

d
fe

at
u

re
s

Pr
ot

ei
n

st
ru

ct
u

ra
lp

ro
p

er
ti

es
SS

,s
ol

ve
n

t
A

SA
,H

SE
,

C
N

,a
n

gl
es

Pr
ot

ei
n

fe
at

u
re

s:
se

ve
n

re
p

re
se

n
ta

ti
ve

p
h

ys
io

-c
h

em
ic

al
p

ro
p

er
ti

es
,

20
D

PS
SM

,3
0D

M
ar

ko
v

m
od

el
se

q
u

en
ce

p
ro

fi
le

s

57
B

R
N

N
(B

iL
ST

M
)-

ba
se

d
it

er
at

iv
e

le
ar

n
in

g

[4
9]

D
is

ta
n

ce
s

be
tw

ee
n

re
si

d
u

e
p

ai
rs

A
se

t
of

se
q

u
en

ce
an

d
M

SA
fe

at
u

re
s:

n
u

m
be

r
of

H
H

bl
it

s
al

ig
n

m
en

ts
;s

eq
u

en
ce

-l
en

gt
h

fe
at

u
re

s
(2

1
fe

at
u

re
s

of
on

e-
h

ot
of

am
in

o
ac

id
,

p
ro

fi
le

s
of

PS
I-

B
LA

ST
,H

H
bl

it
s

an
d

n
on

-g
ap

p
ed

H
M

M
,H

H
bl

it
s

bi
as

,d
el

et
io

n
p

ro
ba

bi
li

ty
an

d
re

si
d

u
e

in
d

ex
);s

eq
u

en
ce

-l
en

gt
h

sq
u

ar
ed

fe
at

u
re

s
(4

84
fe

at
u

re
s

of
Po

tt
s

m
od

el
,

Fr
ob

en
iu

s
n

or
m

an
d

ga
p

m
at

ri
x

D
N

N
[5

0]

O
th

er
re

p
re

se
n

ta
ti

on
s

G
ra

p
h

re
p

re
se

n
ta

ti
on

(G
C

N
-b

as
ed

)

D
ru

g
d

is
co

ve
ry

:P
re

d
ic

ti
on

of
in

te
rf

ac
es

be
tw

ee
n

p
ro

te
in

p
ai

rs
N

or
m

al
iz

ed
n

od
e

fe
at

u
re

s
(s

eq
u

en
ce

-b
as

ed
fe

at
u

re
s

an
d

fe
at

u
re

s
co

m
p

u
te

d
fr

om
st

ru
ct

u
re

)
an

d
ed

ge
fe

at
u

re
(t

h
e

d
is

ta
n

ce
be

tw
ee

n
tw

o
re

si
d

u
es

);
m

u
lt

ip
le

la
ye

rs
of

gr
ap

h
co

n
vo

lu
ti

on

R
es

id
u

e
re

p
re

se
n

ta
ti

on
(n

od
e)

:2
5

fe
at

u
re

s;
R

es
id

u
e

p
ai

rs
re

p
re

se
n

ta
ti

on
(e

d
ge

):
ra

d
ia

lb
as

is
fu

n
ct

io
n

d
is

ta
n

ce

D
C

N
N

[5
1]

Po
ly

p
h

ar
m

ac
y:

PP
I,

d
ru

g-
p

ro
te

in
ta

rg
et

in
te

ra
ct

io
n

,d
ru

g–
d

ru
g

in
te

ra
ct

io
n

N
od

e
in

fo
rm

at
io

n
(d

ru
g

n
od

es
an

d
p

ro
te

in
n

od
es

)a
n

d
ed

ge
in

fo
rm

at
io

n
(p

ro
te

in
–p

ro
te

in
,

d
ru

g–
d

ru
g

an
d

d
ru

g-
p

ro
te

in
ed

ge
s)

;
tw

o-
la

ye
r

m
u

lt
im

od
al

gr
ap

h

N
od

e
em

be
d

d
in

g:
d;

ed
ge

em
be

d
d

in
g:

d
×

d
(d

=
32

,6
4)

N
on

-l
in

ea
r,

m
u

lt
i-

la
ye

r
G

C
N

[5
2]

D
ru

g-
ta

rg
et

in
te

ra
ct

io
n

s
id

en
ti

fi
ca

ti
on

N
od

e
in

fo
rm

at
io

n
(D

PP
)a

n
d

ed
ge

in
fo

rm
at

io
n

(a
ss

oc
ia

ti
on

s
be

tw
ee

n
d

ru
g-

p
ro

te
in

p
ai

rs
);

G
C

N
-b

as
ed

fe
at

u
re

re
p

re
se

n
ta

ti
on

N
od

es
of

D
PP

fe
at

u
re

s:
51

or
53

Ed
ge

em
be

d
d

in
g

m
at

ri
x:

T
×

T
T

=
(N

dr
u

g
×

N
pr

ot
ei

ns
)

D
N

N
[5

3]

L
is

th
e

le
n

gt
h

of
th

e
se

q
u

en
ce

,n
is

th
e

n
u

m
be

r
of

am
in

o
ac

id
s

to
co

m
p

os
e

th
e

gr
am

,N
d

ru
gs

an
d

N
p

ro
te

in
s

ar
e

th
e

n
u

m
be

r
of

d
ru

gs
an

d
p

ro
te

in
s,

D
re

fe
rs

to
d

im
en

si
on

al
,e

.g
.2

0D
re

fe
rs

to
20

-d
im

en
si

on
al

.A
bb

re
vi

at
io

n
s:

D
B

P,
D

N
A

-b
in

d
in

g
p

ro
te

in
s;

SS
,s

ec
on

d
ar

y
st

ru
ct

u
re

;A
SA

,a
cc

es
si

bl
e

su
rf

ac
e

ar
ea

;C
N

,c
on

ta
ct

n
u

m
be

r;
H

SE
,h

al
f

sp
h

er
e

ex
p

os
u

re
;M

SA
,m

u
lt

ip
le

se
q

u
en

ce
al

ig
n

m
en

t;
PP

I,
p

ro
te

in
–p

ro
te

in
in

te
ra

ct
io

n
;H

LA
-I

I,
h

u
m

an
le

u
ko

cy
te

an
ti

ge
n

cl
as

s
II

;C
N

N
,c

on
vo

lu
ti

on
n

eu
ra

ln
et

w
or

k;
LS

T
M

,l
on

g
sh

or
t-

te
rm

m
em

or
y;

C
N

N
_L

ST
M

,C
N

N
an

d
LS

T
M

;B
R

N
N

,b
id

ir
ec

ti
on

al
re

cu
rr

en
t

n
eu

ra
ln

et
w

or
ks

;B
iL

ST
M

,b
id

ir
ec

ti
on

al
LS

T
M

;m
LS

T
M

,m
u

lt
ip

li
ca

ti
ve

LS
T

M
;S

V
M

,s
u

p
p

or
t

ve
ct

or
m

ac
h

in
e;

EL
M

o,
em

be
d

d
in

gs
fr

om
la

n
gu

ag
e

m
od

el
s;

B
ER

T,
bi

d
ir

ec
ti

on
al

en
co

d
er

re
p

re
se

n
ta

ti
on

s
fr

om
tr

an
sf

or
m

er
s;

G
C

N
,g

ra
p

h
co

n
vo

lu
ti

on
al

n
et

w
or

k;
D

C
N

N
,d

if
fu

si
on

–c
on

vo
lu

ti
on

al
n

eu
ra

l
n

et
w

or
k;

D
N

N
,d

ee
p

n
eu

ra
l

n
et

w
or

k;
D

PP
,d

ru
g–

p
ro

te
in

p
ai

rs
.

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/20/1/61/6126091 by guest on 30 M

arch 2023

Sequence representation approaches 65

Figure 1. Architectures of different types of sequence representation schemes. (A) Task model architecture with end-to-end representation learning. Sequence

representation learning, a one-hot encoding-based simple embedding scheme (the components in the dotted-line), is combined with the training of the subsequent

network layers. (B) Task model architecture with pretraining-based sequence representation, including non-contextual embedding and transfer learning-based

representation models. The pretraining embedding models include word2vec model (non-contextual embedding), LSTM-based and transformer-based models

(transfer learning-based embedding), architectures of which are presented in C–E, respectively. (C) A training model of word2vec embedding scheme: skip-gram model

(a sample of window size C = 4). The number of the surrounding words of the target word is C, and the window size is C + 1, here C equals to four. (D) An architecture

of LSTM-based representation scheme: ELMo. The ELMo vector is the final sequence representation that is formed by embedded token representation (x1, x2, . . . , xN)

(colored in green), results of two (L = 2) hidden layers (rectangles in light and dark red). The token representation is obtained by embeddings (text block in green)

that are usually calculated by some context-independent embedding approaches. The oval in blue of each layer refers to LSTM cell, detailed architecture of which is

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/20/1/61/6126091 by guest on 30 M

arch 2023

66 Cui et al.

unsupervised pretraining-based representation learning for
protein sequences has emerged in protein modeling since a
range of unsupervised pretraining technologies for language
model learning have shown remarkable performance on many
NLP tasks. In addition, it has been shown that pretrained
models can learn universal language representations on a
large unlabelled corpus, which are beneficial for downstream
tasks because the training of a new model from scratch can
be avoided. Recent studies have shown that the pretrained
models that have emerged in NLP can be applied for learning
protein representations from massive amino acid sequence
datasets. The pretrained learning approaches, such as word2vec
embedding [40] as the representative for non-contextual
embedding mechanism, and ELMo-based (Embeddings from
Language Models, ELMo [56]) and BERT-based representation
model [46] as sequence representation based on transfer
learning that have just emerged in the past2 years, have become
popular one after another. The pretrained learning embedding
models aim at learning a continuous representation for each
word in a document, which is implemented by unsupervised
learning models. The architecture of these learning models has
advanced from shallow to deep due to complicated factors, such
as the development of computational power, training skills
and machine learning methods. Traditional non-contextual
embedding utilizes word2vec models as representatively
shallow, three-layer neural networks, such as skim grams (Figure
1c), whereas transfer learning-based representation model
architectures, which include long short-term memory-based
(LSTM-based) architectures (e.g. ELMo as presented in Figure
1d) and transformer-based architectures (e.g. BERT) model, as
presented in Figure 1e), are deep neural networks.

To reveal the comparison of each type of representation
learning approaches and to select a suitable model architecture
for downstream tasks, the architecture of sequence represen-
tation learning and its working principle must be presented in
detail. In the section below, we introduce the categories of amino
acid sequence representation learning approaches and describe
in detail the mainly architectures of each type of embedding
model (architectures of different representation schemes are
presented in Figure 1).

End-to-end representation learning
for protein sequences
The term ‘end-to-end’ means that a machine learning model can
directly convert input data into a prediction output bypassing
the independent intermediate steps that are typically conducted
in a traditional pipeline [57, 58]. Within the end-to-end learning
process, between the input data and the final output (from
end-to-end), the intermediate layers of the task architecture are
trained as one large part that can be treated as a black box, which
demonstrates that it emphasizes the entire sequence task rather
than a part of the system.

To input primary protein sequences into the task model, the
amino acid sequences should be encoded and embedded into
a continuous numerical vector that can be computed by the

computer. A one-hot encoding-based simple embedding scheme
(sequence representation in Figure 1a) is the originally widely
used protein representation scheme in the end-to-end learning
model of protein tasks. In simple terms, the process is as follows:
The amino acids in the protein sequence are represented by one-
hot vectors and embedded into a continuous vector that is fed
to the next layers of the task model. The embedding learning
of the protein sequence is combined with the training of the
subsequent network layers.

One-hot encoding, which is a sparse encoding (colored in
yellow in Figure 1a), represents an amino acid by a vector (a
binary variable) of length 20 that contains a single one and 19
zeros, where 20 refers to the total number of common amino
acids that are required for protein synthesis in all organisms.
The process of one-hot encoding can be simply described as
follows: Typically, each amino acid in a sequence is represented
by an integer value that ranges from 0 to 19, and each integer is
converted into a binary vector (called a ‘one-hot vector’).

Then, the binary variable is multiplied by a weight matrix (the
parameters that are learned from the model training) to obtain
a new numeric vector — the final embedded representation of
an amino acid. It can be expressed as vi = Wxi, where xi is
a 20-dimensional one-hot vector of the i-th amino acid in the
sequence; W ∈ Rd×20 is the weight matrix, which can be updated
by fitting a deep neural network; and vi is the final embedded
vector of the i-th amino acid in the protein sequence. d is the
dimension of the embedded vector vi and is the parameter that
we should determine. Regarding the dimension of the embedded
vector, a value between 100 and 128 may be a satisfactory choice
based on previous experience. We refer to this simple process as
regular embedding, and it is usually implemented by an embed-
ding layer of Keras (a deep-learning application programming
interface that is written in Python) or convolutional layers.

Previous studies have shown that the end-to-end learning
model may be able to capture the physicochemical similarities
and differences between amino acids, but the learned character-
istic information of amino acids differs among tasks and model
architectures [30]. Arguably, the task models that use end-to-end
learning enable the capture of the characteristic information of
amino acids that is related to the specified task, namely, the
end-to-end learning models may learn meaningful numerical
representations for protein sequences.

Two main observations are made regarding the end-to-
end learning scheme: (1) End-to-end learning requires a
large amount of labeled data for training, and for each task,
the larger and higher quality the dataset, the better the
prediction performance that can be realized. (2) The embedding
dimensionality is a critical hyperparameter that should be
determined according to the task architecture and should not
be too small. In addition, there is a limitation when using
end-to-end sequence representation scheme. The protein-
related task with end-to-end learning is a type of supervised
deep learning, a large set of labeled data is required for
learning a valuable representation of amino acid sequences
to the realize satisfactory prediction performance. However,
the construction of large-scale labeled datasets is expensive

presented in (F). (E) An architecture of transformer-based representation model: BERT. Representations of inputs (rectangles in dark yellow) are obtained by summing

three embedding vectors of inputs: token embeddings, segment embeddings and position embeddings. Ovals in blue refer to encoder blocks of transformers, and

architecture of transformer is presented in I. (F) LSTM cell architecture at the k-th time step. (G) The classic encoder–decoder framework. (H) Framework of the

encoder–decoder with attention mechanism. (I) Transformer architecture. Encoders (blocks in gray) are stacked one the left, while stacked decoders (blocks in gray) are

on the right. A vector of positional encoding is added with the embedding vector of input words before the first encoder layer and the first decoder layer. The outputs

of the final encoder layer are passed into each of decoders. Results of decoders are computed one by one by using all of results that are predicted at previous steps, as

presented that yi is generated through /s, y1, . . . , and yi−1, where "/s" refers to the start of sequence. Abbreviations: LSTM, long short-term memory; ELMo, embeddings

from language models; BERT, bidirectional encoder representations from transformers.

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/20/1/61/6126091 by guest on 30 M

arch 2023

Sequence representation approaches 67

due to the high annotation costs; therefore, comparatively, not
so many high-quality labeled data are available in the protein
databases (such as the manually annotated and reviewed data
of UniProtKB/Swiss-Prot in Supplementary Figure S1).

Non-contextual embedding learning
for protein sequences
Non-contextual word-embedding techniques aim at learning a
global word embedding by ignoring the differences in the mean-
ings of words among contexts. Within bioinformatics, word2vec
was the most popular non-contextual word-embedding scheme
for biological sequences prior to the emergence of representa-
tion models with deep architecture. The word2vec algorithm
[40, 41] uses a neural network model (a skip-gram model) to
learn word embeddings from a large corpus of text, and the
process can be described in three steps: (1) forming a vocabu-
lary from all the unique words in the text. The final objective
is to learn a numerical vector for each of the words in this
vocabulary; (2) constructing a model for training. Two model
architectures, namely, continuous bag-of-words [59, 60] and skip-
grams [40, 59, 60], can be utilized for the word2vec algorithm,
while skip-grams (Figure 1c) are widely used both in NLP and
bioinformatics; and (3) training the model using samples of type
(input_word, output_word), which are selected by sliding context
windows across the text. The words in the context include
the cente word (target word) and surrounding words (context
words) of the center word, which are used as input words and
output words, respectively, to form the training samples. The
size of the context window is determined by the window width
w, namely, the number of words on either side of the target
word.

Regarding the training model, the skip-gram (Figure 1c)
model is trained to learn embeddings that predict the probability
of a surrounding word occurring given a center word, in which
the center word (the target word) is at the input layer and the
context words (the surrounding words) are on the output layer.
{(x, ti)} denotes training samples from one contextual window,
namely, {(x, t1), (x, t2), . . . , (x, tC)}, where x is the input word (target
word) and {x1, x2, . . . , xV} is its one-hot vector representation as
units of the input layer, the dimension of which is the vocabulary
size V, and C is the number of the surrounding words in the
window and the window size w = C + 1. ti is the actual i-th
output context word and can be represented by a one-hot vector
{tij}, for j = 1, 2, . . . , V, and tij will only be 1 when the j-th word
in the vocabulary is the output word; otherwise, tij = 0. yi for
i = 1, 2, . . . , C is the prediction result of the i-th output word
ti; hence, a total of C multinomial distributions (y1, y2, . . . , yC) are
outputs on the output layer, and each of them can be represented
as {yij}, for i = 1, 2, . . . , C and j = 1, 2, . . . , V, the value of which is
the predicted probability that the i-th output context word is the
j-th word in the vocabulary.

The training objective of the model is to minimize the
prediction error on the units between the actual output tij and
the prediction output yij by the backpropagation algorithm. How-
ever, the trained model is not required, and the objective of train-
ing is to obtain the final updated weights between the input layer
and the hidden layer, which are represented as matrix WV×N. It
is proven that each row of the weight matrix is the embedded
vector representation of the target word in the previous study
[60]. The parameter N is the dimension of the word vector and
should be customized. Through the word2vec scheme, a vocabu-
lary of words and the corresponding vector of each unique word

in the vocabulary are acquired by training on the large corpus of
text, and the word embeddings can be used for the downstream
tasks. The following points should be considered:

(1) The pretrained word embeddings of word2vec are static
global embeddings because the embedded vector of a word
is always the same regardless of where it occurs. The dif-
ferences in meaning of a word among sentences cannot be
distinguished as each word has only one embedding.

(2) Similar words can be embedded close to one another in the
vector space.

(3) An input word with a V-dimensional one-hot representa-
tion is embedded into an N-dimensional continuous vec-
tor, and V is typically much larger than N, namely, the
word2vec model can embed words from a discrete space
with high dimensionality into a continuous space with low
dimensionality.

(4) The window width w and the dimensionality of the word-
embedding vector N are important embedding hyperparam-
eters and should be adjusted in the embedding model.

(5) Within bioinformatics, splitting the sequence into words
is the key step in the word2vec embedding scheme. In
previous studies, protein sequences have been typically
represented by lists of n-grams that represent n consecutive
amino acids of a protein sequence as a single unit.

Transfer learning-based representation
learning for protein sequence
Transfer learning-based representation learning schemes can be
roughly divided into LSTM-based and transformer-based embed-
dings, both of which use the deep neural network architecture.
Pretrained models that are based on popular language models
such as ELMo (Embeddings from Language Models) [56] and
BERT [46] are representative models of the two types of deep
contextualized word representations.

LSTM-based embedding schemes

(ELMo and its derived models). LSTM-based embedding schemes
refer to sequence representation approaches that use unsu-
pervised learning that is implemented by the architectures of
multiple layers of bidirectional or unidirectional LSTMs, which
take the form of next-token prediction. A model is trained on a
huge dataset of unlabelled sequences to predict the most likely
next token in a sequence based on all previous tokens of this
sequence, which is represented as p(xi|x1, x2, . . . , xi−1), where xi is
the token at position i of the sequence and each token is typically
a character or a word in the sequence. For protein tasks, such as
secondary structure prediction and localization prediction [61],
the LSTM-based sequence representation approaches are typi-
cally conducted on the character level, namely, each amino acid
in the sequence as one token is the input of the representation
learning model.

The representation learning models that are based on ELMo
[56] and its variants are widely used LSTM-based embedding
schemes. The ELMo model (Figure 1d) is a task-specific linear
combination of the intermediate layer representations from the
bidirectional LSTM language model, which is a contextual and
non-static word-embedding scheme. The process of training the
bidirectional LSTM model on a large dataset and computing the
ELMo vectors for the downstream tasks can be broadly described

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/20/1/61/6126091 by guest on 30 M

arch 2023

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bfgp/elaa030/-/DC1

68 Cui et al.

by the following steps: (1) Prepare and preprocess data. An unsu-
pervised dataset for pretraining the LSTM-based representation
model and a supervised dataset for training the downstream
task model are required. A vocabulary file that contains all
unique tokens in the unsupervised dataset should be created.
The training data for the representation learning model are
tokenized sequences. (2) Train the bidirectional representation
model on the large dataset of unsupervised sequences. The
model combines both a forward language model and a backward
representation model, which contain L-layer forward and back-
ward LSTMs (L hidden layers), respectively. The model training
aims at predicting the next token for each input token in the
sequence, in which for a sequence of N tokens, (t1, t2, . . . , tN), both
the forward and backward representation models compute the
probability of the sequence by modeling the probabilities of each
token, namely, p(tk|t1, . . . , tk−1) and p(tk|tk+1, . . . , tN), respectively,
for k = 1, 2, . . . , N. Thus, the loss of training is calculated as
the sum of the log likelihoods of the forward and backward
directions: Loss = ∑N

k=1(log p(tk|t1, . . . , tk−1) + log p(tk|tk+1, . . . , tN)).
Finally, the trained model and a set of 2L + 1 representations for
each token, which include the hidden states of each of L hidden
layers in two directions and the input of the embedded vector,
namely, Rk = {xk, hforward

k,j , hbackward
k,j |j = 1, 2, . . . , L}, are acquired. (3)

Compute the ELMo vector for a specified downstream task by
training the task model on the supervised dataset. The learned
set of representations can form the ELMo vector for each token,
namely, ELMotask

k = E(Rk; �task) = γ task(
∑L

j=0 stask
j hk,j), in which �task

denotes the parameters of the linear combination for computing
the ELMo vector, which include the softmax-normalized weights
stask

j for the representation vectors of the token and the scalar
parameter γ task that enables the task model to scale the ELMo
vector, and they can be learned by training the task-specific
model.

The following special explanations are provided:

(i) Given a sequence of N tokens (t1, t2, . . . , tN), the input vector
representations of each token in sequence (x1, x2, . . . , xN)
are context-independent token representations that are
acquired from other neural language models, such as
CNN-BIG-LSTM (large number of LSTM units along with
character-level convolutional neural networks) [62] and
character convolutional neural nerworks (CharCNN) [63].

(ii) In each of the L hidden layers, there is one LSTM cell (Figure
1f), but N tokens are fed to the cell unit at N time steps, in
each of which the networks share the weights. The outputs
of the LSTM cell at the k-th time step, namely, the hidden
state hk, can be regarded as a representation of the token tk,
which are computed as:

fk = σ
(
Wforget • [hk−1, xk] + bforget

)

ik = σ
(
Winput • [hk−1, xk] + binput

)

∼
Ck = tanh

(
Wcell • [hk−1, xk] + bcell

)

Ck = fk ∗ Ck−1 + ik ∗ ∼
Ck

ok = σ
(
Woutput • [hk−1, xk] + boutput

)

hk = ok
∗ tanh (Ck) ,

where fk, ik and ok are the outputs from neural network layers
of LSTM networks, which are called the forget gate layer, input

gate layer and output gate layer, respectively, and
∼
Ck and Ck are

the candidate and updated cell states, respectively. The input

of the k-th time step xk and the output of the last step hk−1

are concatenated as the input of three gate layers, which are
the sigmoid layers, by outputting a vector of values that are
between 0 and 1 to control or select the information. Similarly,
the tanh layer outputs a vector of values that are between −1

and 1 to create a new candidate cell state
∼
Ckthat can be added

to the state to update the cell state. The cell state is the key
element of LSTM networks, which runs through all time steps
with only minor linear interactions to realize long-term memory.
The output state of each time step hk is converted into input for
the next time step to realize short-term memory.

(3) In the computation of the ELMo vector, the representations
from each LSTM layer hj,kfor j = 1, 2, . . . , L correspond to the
concatenation of the forward hidden state and backward hidden
state, namely, [hforward

k,j ; hbackward
k,j], whereas hj,kfor j = 0 corresponds

to the vector representation that is learned from the other
context-independent word-embedding model, namely, xk.

The following points should be considered: (1) The ELMo
vector can be derived not only from the linear combination of
the intermediate layer representations but also from only the
top layer of the LSTM network, which can be referred to as a
variant of the ELMo vector. (2) The learned ELMo vector ELMotask

k

can be directly fed as the input to the supervised model of
the downstream task, while the ELMo enhanced representation,
such as [xk; ELMotask

k], which is obtained by concatenating the
ELMo vector with xk can also be passed to the downstream task
model. In addition, the ELMo vector can be used at the output
layer of the downstream task by concatenating it with the hidden
states of the downstream model. (3) The parameters of the bidi-
rectional LSTM model, which include the number of LSTM layers
L, the dimension projection and the units of the L layers, should
be assigned. Bidirectional LSTMs can capture various types of
contextual information. Previous studies on NLP [64] have shown
that the lower layers easily capture syntactic information, while
the higher layers represent semantic information; therefore, the
selection of L is important. In the ELMo model, L = 2 bidirectional
LSTM layers are used. Assume the dimension projection, namely,
the dimension of the hidden state vector hforward

k,j or hbackward
k,j , is M.

Then, the bidirectional L-layer LSTMs have 8 × M units because
there are four neural network layers (three gate layers and a tanh
layer, four yellow rectangles as presented in Figure 1f) in each
of the forward and backward LSTM layers, and the dimension
of hk, which is the concatenation of the hidden-state vectors,
is 2 M, which is the same as the dimension of the input token
embedded vector xk.

For protein tasks, the LSTM-based sequence representation
approaches are usually conducted on the character level,
namely, each amino acid in a sequence is input as a token
into the sequence embedding model. The input amino acid
sequence is typically embedded by the uncontextualized
token representation before the LSTM language model-based
embedding, which can map each amino acid of the input
sequence to a fixed-length vector without considering the
information of neighboring words, such as CharCNN. The final
representation of each amino acid in sequence is acquired from
the hidden states of the forward and backward directions of each
LSTM layer. In addition to the directional LSTMs, the multilayers
of unidirectional LSTMs are also used for the embedding
scheme. For instance, the UniRep (the unified representation)
approach [48] uses a model with 1900-hidden-unit multiplicative
LSTM to learn amino acid embeddings, in which the UniRep
representation is constructed as the average of the 1900-unit
hidden states of the model, which can integrate information
across distant amino acids. The LSTM-based model can capture

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/20/1/61/6126091 by guest on 30 M

arch 2023

Sequence representation approaches 69

general features of protein fitness landscapes that extend
beyond task-specific training data.

Transformer-based embedding scheme

(BERT and its derived models). The transformer model [65] uses
the encoder–decoder architecture, which is formed by stacked
encoders and decoders. Each encoder contains two parts: a
self-attention layer and a feed-forward layer (dense layer). Each
decoder also contains a two-layer network that corresponds to
the encoder, but there is an attention layer between the two
layers. The most popular language model at present, namely
BERT, is based on transformers that are widely used in NLP,
such as machine translation, speech recognition and text min-
ing. In bioinformatics, BERT-based models have been used for
biomedical text mining [47], structure prediction and protein
engineering [66].

The encoder–decoder framework (Figure 1g) is a widely used
architecture in deep learning, the process of which is to generate
a target (y1, y2, . . . , yn) through the intermediate representation of
the input sentence x = (x1, x2, . . . , xm). The encoder and decoder
can choose different models according to the tasks of NLP, such
as text processing and speech recognition, for which the recur-
rent neural network (RNN) model is typically used, and image
processing, for which the CNN model is always used. Here, we
consider the RNN encoder–decoder as an example. The encoder
aims at encoding the input into an intermediate semantic rep-
resentation C through a nonlinear transformation, which is rep-
resented as C = fc(h1, h2, . . . , hm), where ht = fenc(xt, ht−1) is a
hidden state of the encoder model at time t, while the decoder
generates output at each time step according to the intermediate
semantic representation C through a nonlinear transformation
yi = fdec(C, yi−1), for i = 1, 2, . . . , n; fenc, fc and fdec are nonlinear
functions. In the encoder–decoder framework, there are no dif-
ferences among the semantic encodings C of all input words that
are used to generate the output word at each time step, namely,
all words of the input source have the same influence on the
generation of the target output yi. If the input source is long,
as the semantic information is reflected by only one semantic
vector C, the information of each input word has disappeared,
and a substantial amount of detailed information will be lost.
Therefore, the introduction of the attention mechanism into the
encoder–decoder architecture is important.

In the encoder–decoder model with attention mechanism
(Figure 1h), the attention distribution coefficient is incorpo-
rated into the semantic encoding of each input word, namely,
the intermediate semantic representation C, is replaced by a
semantic encoding that is adjusted by the attention distribution
according to the current output. The semantic encoding in the
attention model can be represented as Ci = fc(ait, fenc(xt, ht−1)) =
fc(ait, ht), for i = 1, 2, . . . , n, t = 1, 2, . . . , m, where m is the length
of the input source sentence, n is the number of outputs, and ait

is the attention distribution coefficient for the t-th input word
of the source sentence when outputting the i-th target word. fenc

denotes the transformation function of the input in the encoder
model, and fc denotes the transformation function for gener-
ating the semantic representation of the whole input sentence
according to the intermediate representation of each input word
and is essentially a weighted sum function. Then, Ci can be
represented as Ci = ∑m

t=1aitht, where ht refers to the semantic
encoding to which the encoder maps the input xt. Then, in the
decoder, the conditional probability of generating the output at
time step i can be defined as p(yi|y1, y2, . . . , yi−1, x) = fc(yi−1, si, Ci),

where si is the hidden state for time i, which is computed as
si = fdec(si−1, yi−1, Ci). The semantic vector Ci, which was computed
previously, depends on a sequence of encoding representations
(h1, h2, . . . , hm), and there are many approaches to computing
the weight ait, among which the classical computation is ait =

exp(eit)∑m
t=1 exp(eit)

, where eit = fa(si−1, ht), eit refers to the alignment of the
output at time i, namely, the match score between the output
words at time i and all time steps of the input sequence, and fa

usually uses the tanh activation function [67].
In the encoder–decoder architecture with attention mecha-

nism, an attention mechanism is utilized between the target
and all elements of the input source, while encoder–decoder
architecture with self-attention refers to the use of an attention
mechanism between the internal elements of the input source or
the elements of the target. The self-attention model dynamically
generates the weights between connections, which can capture
the detailed features between words in the same sentence, such
as syntactic or semantic features in a language model. Moreover,
the introduction of self-attention into a model can facilitate the
capture of the long-distance interdependent features in sen-
tences and can help increase the parallelism of the calculations.
Therefore, self-attention is gradually being widely used.

As discussed above, the transformer model (Figure 1i)
consists of stacked encoders and decoders that contain self-
attention and attention. The main process of the transformer
model can be described as follows: (1) first, the inputs are
processed via an embedding operation, and positional encoding
information is added to them, after which they are passed to the
encoder. (2) Encoder layers are stacked together. Each encoder
layer contains two sublayers, namely, a self-attention and a
fully connected feed-forward network, both of which are added
with residual connection and normalization. (3) Decoder layers
are also stacked together, each of which is passed with the
outputs of the final encoder layer. Compared to the encoder
layers, a third sublayer, namely, the attention layer is inserted
and the self-attention sublayer in decoder stack is modified
by the masked self-attention. Masking, which is an important
technology of the transformer model, refers to the hiding of
values to make them have no effect when the parameters
are updated during model training. Two types of masking are
typically used in the transformer model: padding masking and
sequence masking. Padding masking refers to filling various
positions with meaningless values or truncating the sequences
to the same length; thus, these positions can be assigned very
large negative values so that the probabilities of these positions
will be close to 0. Sequence masking, which is only used for the
self-attention of the decoder, renders the decoder unable to see
future information because, for a sequence, the output at time
i of the decoder should depend only on the outputs before time
i, not the outputs after time i. (4) The output layers include a
dense layer and a softmax layer, from which the probability of
the target is obtained as the final result of the model.

The following observations are made: (1) The encoder can be
calculated in parallel, whereas decoding cannot be conducted for
the whole sequence at the same time but is conducted entry by
entry, similar to the RNN model. (2) A vector of positional encod-
ing is added with the embedding vector of input words before the
first encoder layer and the first decoder layer, which can deter-
mine the position of each word in the sequence. The reason for
adding positional encoding information is that the transformer
model lacks the ability to capture sequential sequences; hence,
regardless of how the structure of the sentence is disrupted, the
results of the transformer are similar. The positional encoding
can be obtained via various approaches, such as calculating with

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/20/1/61/6126091 by guest on 30 M

arch 2023

70 Cui et al.

sine and cosine functions [65] or learning from the embedding
model [68–71].

BERT [46], which is based on a bidirectional transformer
encoder and could be the state-of-art language representation
model at present, contains two main technologies: a transformer
architecture and unsupervised pretraining. The main compo-
nents of the BERT model include (1) representations of inputs,
which are obtained by summing three embedding vectors of
inputs: token embeddings, segment embeddings and position
embeddings; (2) transformer blocks, which contain multilayer
bidirectional transformer encoders. The base and large BERT
models are proposed by previous studies [46], in which the size
of the transformer blocks (the number of layers) is 12 and 24, the
hidden size of the model is 768 and 1024, and the number of self-
attention heads is 12 and 16, respectively. There are two steps
in the BERT framework: pretraining the BERT model and fine-
tuning the BERT model. The BERT model should be pretrained
by using the unsupervised tasks, and during fine-tuning, the
pretrained parameters are used to initialize the BERT model, and
the initialized model is fine-tuned using labeled data from the
downstream tasks.

From architectures of these types of contextual embedding
approaches, BERT (transformer-based representation) are deep
architectures with more than 12 layers of neural networks,
while the ELMO (LSTM-based representation) are a shallow
architecture that only uses three layers of bidirectional LSTMs.
Previous studies demonstrate that a model with deep networks
can outperform a shallow model when training on a large
amount of unlabelled data. Moreover, both BERT and its variants
(transformer-based representation) use an encoder–decoder
framework that is based on an attention mechanism and can
outperform sequential models such as RNN- or LSTM-based
models, including by improving the parallelism of the model
and alleviating the problems that are posed by the long-term
dependency. However, the BERT model applies the masked
language model with a bidirectional transformer encoder
architecture that can meet the needs of language representation
models for the encoding of complete input sentence when
only using encoders and not decoders because the BERT model
performs very well on tasks of many types.

Other sequence representation methods
for some specific protein tasks
Except the widely used representation learning types of the first
three groups mentioned above, there are also some task-specific
protein sequence representation approaches, such as extracted
features-based representation and graph computation-based
representation as described in Table 1. For example, in the
article [49] about the protein structure prediction by Zhou
group, physio-chemical properties of amino acids, PSSM profile
and the hidden Markov Model sequence profiles are extracted
as features for representing protein sequence to predict the
protein structural properties using bidirectional RNNs. A recent
research by Andrew et al. [50] presents a deep learning-based
system for protein structure prediction, namely AlphaFold,
and has received a lot of attention recently because of a
considerable advance in protein-structure prediction. In this
research, a set of sequence and multiple sequence alignment
(MSA) features including sequence MSA results, PSSM profiles,
hidden Markov Model sequence profiles, residue index and
so on, are calculated by a number of tools (PSI-BLAST [72],
HHblits [73], HHpred web server [74], etc.), and are used as

input for the prediction neural network. The articles about drug
discovery, design and polypharmacy side effects [51–53] apply
the graph convolutional networks (GCN) for predictions. In these
works, both node features and edge features are calculated
for constructing graphs, and results demonstrate that GCN
can learn the features for the interaction information of drug–
protein, protein–protein and drug–drug. Though they cannot be
widely used for all of protein prediction tasks that use deep
learning, these representations are effective to some specific
tasks.

Discussion and outlook
According to the theoretical analysis and architecture introduc-
tion of each type of representation schemes, the advantages
and disadvantages of them are clearly indicated. It is beneficial
for the researchers to choose a suitable representation scheme
for their own task requirements. For end-to-end representa-
tion learning, great quantity of data with labels is essential to
learn feature information of sequences by training deep neural
networks. Therefore, end-to-end learning-based representation
approaches can be applied for the downstream tasks that large
labeled data sets are available. Moreover, CNN, RNN (especially
LSTM) or combination of them are usually applied as the neu-
ral network layers that construct the models of these down-
stream tasks such as the prediction tasks about protein function
and classification (e.g. the prediction of DNA-binding protein,
RNA-binding protein, protein–protein interaction and subcel-
lular localization) [30, 35–37]. For non-contextual embedding
schemes such as word2vec and doc2vec, downstream tasks that
use these representation approaches, such as the predictions of
protein family classification, functional properties or disordered
protein identification, cannot achieve very good performance
because protein sequences must be split into words (i.e. ‘n-
grams’ that is mentioned previous) but there are no criterion
or universal methods for sequence division. Thence, the non-
contextual embedding approaches are gradually replaced by
the contextual embedding schemes such as transfer learning-
based representation approaches. Even though both of them
are unsupervised learning representation approaches based on
the pretrained models, non-contextual embedding approaches
mentioned above for protein sequence representation are on
word level in which sequence splitting and length of words (i.e.
parameter n in ‘n-grams’) are uncertain, while transfer learning-
based representation approach for protein sequences can be
conducted on the character level (i.e. each single amino acid in a
sequence). Another point that needs to be addressed is the non-
contextual embedding architectures are shallow, while the archi-
tecture of contextual embedding models is based on deep neural
networks. Because of that, more useful feature information of
sequence can be learned by the deep representing models. More-
over, transfer learning-based representation approaches can be
applied for prediction tasks with large dataset as well as tasks
with small dataset. Hence, the state-of-art transfer learning-
based representation techniques such as LSTM-based repre-
sentation (ELMo model) and transformer-based representation
(BERT model) can be used for protein prediction tasks. For ELMo-
based representation model (LSTM-based model), the final ELMo
vector for sequence representation can be used as input features
for the prediction model of downstream tasks, while for BERT-
based representation model (transformer-based model) the pre-
diction model of downstream task should be constructed in the
same way as the BERT model. Moreover, theoretically speaking,
BERT-based representation model can learn more and better

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/20/1/61/6126091 by guest on 30 M

arch 2023

Sequence representation approaches 71

useful features of sequences than ELMo-based representation
model because that the ability of extracting features of trans-
former is higher than LSTM, and the train data and param-
eters that are needed for BERT model are more than ELMo
model. LSTM-based representation (ELMo and its derived mod-
els) has become popular in some tasks such as the prediction
of protein secondary structure, protein function and evolution-
ary understanding [48, 61], in which excellent performance are
achieved. The application of BERT (transformer-based repre-
sentation model) for protein-related prediction tasks is in the
exploratory stage. In addition, there are some special represen-
tation approaches for certain specific tasks. For example, graph
representation (GCN model) is usually applied for representing
the associations between protein–protein pairs, protein–drug
pairs or drug–drug pairs in tasks about drug discovery [51–53,
75]; manually extracted feature-based representation methods
are often used in prediction of protein structure [49, 50, 76]
in which a set of features including various types of protein
sequence features and multiple sequence alignment features
such as physicochemical properties of amino acids and distance
between pairs of residues extracted by various of algorithms or
tools are used for representing protein sequence and are then
used as input into the task model. It is because that for graph rep-
resentation nodes and edges in the graph can represent protein-
s/drugs and interactions between them, respectively; while for
manually extracted feature-based representation, more infor-
mation about the structure may be conveyed from many kinds
of extracted sequence features by training deep neural net-
work that can improve the performance of protein-structure
prediction.

Due to the availability of a large amount of protein sequence
data, sequence-based deep learning techniques have become
popular in protein engineering tasks, in which protein embed-
dings are a major factor in controlling model performance. In
this review, we concentrate on the analysis of types of pro-
tein embedding approaches. We divided the protein embedding
approaches into four large categories and reviewed the devel-
opment and variants of these types of embedding approaches,
and we theoretically described and compared the architectures
of types of embedding models. We hope this study will help
researchers select suitable protein embedding methods for pro-
tein engineering tasks.

Unfortunately, due to the relative immaturity of the applica-
tion of deep learning technologies in protein engineering, there
remains a lack of standardization for protein embedding in this
field. Additional comparisons of embedding models that are
used for protein tasks must be performed to assess the available
methods for protein embedding. Moreover, due to the huge and
increasing availability of protein sequences and the increasing
power of deep learning technology, the development of effective
protein embedding methods to better utilize this technology in
bioinformatics is imperative.

Key Points
• This paper reviewed the development and detailed

model architectures of protein sequence representa-
tion learning approaches.

• We classified protein sequence representation learn-
ing approaches according to the language models in
nature language processing field.

• We discussed the advantages and disadvantages of
each sequence representation category.

• This paper also provided a theoretical guidance for
researchers who aim to choose a suitable sequence
representation approach for their tasks.

Supplementary Data
Supplementary data are available online at http://bib.oxfordjou
rnals.org/

Funding
The work was supported by the National Key R&D Program
of China (2018YFC0910405), and the National Natural Science
Foundation of China (No. 61922020, No. 61771331, No. 91935302).

Conflicts of interest
The authors declare that they have no conflicts of interest.

References
1. Larranaga P, Calvo B, Santana R, et al. Machine learning in

bioinformatics. Brief Bioinform 2006;7:86–112.
2. Liu B, Gao X, Zhang H. BioSeq-Analysis2.0: an updated plat-

form for analyzing DNA, RNA, and protein sequences at
sequence level and residue level based on machine learning
approaches. Nucleic Acids Res 2019;47:e127.

3. Liu KW, Chen W. iMRM: a platform for simultaneously iden-
tifying multiple kinds of RNA modifications. Bioinformatics
2020;36:3336–42.

4. Zhao T, Hu Y, Peng J, et al. DeepLGP: a novel deep learning
method for prioritizing lncRNA target genes. Bioinformatics
2020;36:4466–72.

5. Zhao T, Hu Y, Cheng L. Deep-DRM: a computational
method for identifying disease-related metabolites based on
graph deep learning approaches. Brief Bioinform 2020;10. doi:
10.1093/bib/bbaa212.

6. Hu Y, Zhang HH, Liu B, et al. rs34331204 regulates TSPAN13
expression and contributes to Alzheimer’s disease with sex
differences. Brain 2020;143(11): e95.

7. Xu L, Liang G, Liao C, et al. An efficient classifier
for Alzheimer’s disease genes identification. Molecules
2018;23:3140.

8. Zeng X, Zhu S, Liu X, et al. deepDR: a network-based deep
learning approach to in silico drug repositioning. Bioinformat-
ics 2019;35:5191–8.

9. Maienschein-Cline M, Dinner AR, Hlavacek WS, et al.
Improved predictions of transcription factor binding sites
using physicochemical features of DNA. Nucleic Acids Res
2012;40:e175–5.

10. Jansen R, Yu H, Greenbaum D, et al. A Bayesian networks
approach for predicting protein-protein interactions from
genomic data. Science 2003;302:449–53.

11. Guo Y, Yu L, Wen Z, et al. Using support vector machine
combined with auto covariance to predict protein–protein
interactions from protein sequences. Nucleic Acids Res
2008;36:3025–30.

12. Zhang X, Liu S. RBPPred: predicting RNA-binding proteins
from sequence using SVM. Bioinformatics 2017;33:854–62.

13. Cai C, Han L, Ji ZL, et al. SVM-Prot: web-based support vector
machine software for functional classification of a protein
from its primary sequence. Nucleic Acids Res 2003;31:3692–7.

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/20/1/61/6126091 by guest on 30 M

arch 2023

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bfgp/elaa030/-/DC1
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://doi.org/10.1093/bib/bbaa212

72 Cui et al.

14. Su R, Wu H, Xu B, et al. Developing a multi-dose compu-
tational model for drug-induced hepatotoxicity prediction
based on Toxicogenomics data. IEEE/ACM Trans Comput Biol
Bioinform 2018;16:1231–9.

15. Wei L, Wan S, Guo J, et al. A novel hierarchical selective
ensemble classifier with bioinformatics application. Artif
Intell Med 2017;83:82–90.

16. Wei L, Xing P, Zeng J, et al. Improved prediction of protein–
protein interactions using novel negative samples, features,
and an ensemble classifier. Artif Intell Med 2017;83:67–74.

17. Li C-C, Liu B. MotifCNN-fold: protein fold recognition
based on fold-specific features extracted by motif-
based convolutional neural networks. Brief Bioinform 2020.
doi: 10.1093/bib/bbz133.

18. Liu B, Zhu Y, Yan K. Fold-LTR-TCP: protein fold recognition
based on triadic closure principle. Brief Bioinform 2020. doi:
10.1093/bib/bbz139.

19. Wang H, Ding Y, Tang J, et al. Identification of mem-
brane protein types via multivariate information fusion
with Hilbert-Schmidt independence criterion. Neurocomput-
ing 2020;383:257–69.

20. Li J, Pu Y, Tang J, et al. DeepAVP: a dual-channel deep neural
network for identifying variable-length antiviral peptides.
IEEE J Biomed Health Inform 2020;24:3012–19.

21. Shen Y, Tang J, Guo F. Identification of protein subcellular
localization via integrating evolutionary and physicochem-
ical information into Chou’s general PseAAC. J Theor Biol
2019;462:230–9.

22. Shen Y, Ding Y, Tang J, et al. Critical evaluation of web-based
prediction tools for human protein subcellular localization.
Brief Bioinform 2019;21:1628–40.

23. Cheng L. Computational and biological methods for gene
therapy. Curr Gene Ther 2019;19:210–0.

24. Cheng L, Zhao H, Wang P, et al. Computational methods
for identifying similar diseases. Mol Therapy Nucleic Acids
2019;18:590–604.

25. Xu L, Liang G, Liao C, et al. K-skip-n-gram-RF: a random
Forest based method for Alzheimer’s disease protein iden-
tification. Front Genet 2019;10:33.

26. Xu L, Jiang S, Wu J, et al. An in silico approach to identifi-
cation, categorization and prediction of nucleic acid binding
proteins. Brief Bioinform 2020. doi: 10.1093/bib/bbaa171.

27. Shao J, Yan K, Liu B. FoldRec-C2C: protein fold recognition by
combining cluster-to-cluster model and protein similarity
network. Brief Bioinform 2020. doi: 10.1093/bib/bbaa144.

28. Zhu XJ, Feng CQ, Lai HY, et al. Predicting protein structural
classes for low-similarity sequences by evaluating different
features. Knowl-Based Sys 2019;163:787–93.

29. Jones DT. Protein secondary structure prediction
based on position-specific scoring matrices. J Mol Biol
1999;292:195–202.

30. ElAbd H, Bromberg Y, Hoarfrost A, et al. Amino acid
encoding for deep learning applications. BMC Bioinformatics
2020;21:1–14.

31. Jin S, Zeng X, Xia F, et al. Application of deep learning
methods in biological networks. Brief Bioinform 2020. doi:
10.1093/bib/bbaa043.

32. Zeng X, Lin W, Guo M, et al. A comprehensive overview and
evaluation of circular RNA detection tools. PLoS Comput Biol
2017;13:e1005420.

33. Jurtz VI, Johansen AR, Nielsen M, et al. An introduction to
deep learning on biological sequence data: examples and
solutions. Bioinformatics 2017;33:3685–90.

34. Liu X, Hong Z, Liu J, et al. Computational methods for identi-
fying the critical nodes in biological networks. Brief Bioinform
2020;21:486–97.

35. Kulmanov M, Khan MA, Hoehndorf R. DeepGO: predicting
protein functions from sequence and interactions using
a deep ontology-aware classifier. Bioinformatics 2018;34:
660–8.

36. Qu Y-H, Yu H, Gong X-J, et al. On the prediction of DNA-
binding proteins only from primary sequences: a deep learn-
ing approach. PLoS One 2017;12:e0188129.

37. Almagro Armenteros JJ, Sønderby CK, Sønderby SK, et al.
DeepLoc: prediction of protein subcellular localization using
deep learning. Bioinformatics 2017;33:3387–95.

38. Tang Y-J, Pang Y-H, Liu B. IDP-Seq2Seq: identification
of intrinsically disordered regions based on sequence to
sequence learning. Bioinformaitcs 2020. doi: 10.1093/bioinfor-
matics/btaa667.

39. Xu L, Liang G, Wang L, et al. A novel hybrid sequence-based
model for identifying anticancer peptides. Gen 2018;9:158.

40. Mikolov T, Sutskever I, Chen K, et al. Distributed
representations of words and phrases and their
compositionality. In: Advances in neural information
processing systems, Curran Associates Inc., 57
Morehouse LaneRed Hook, NY, United States. 2013,
3111–9.

41. Goldberg Y, Levy O. word2vec explained: deriving Mikolov
et al.’s negative-sampling word-embedding method. arXiv
preprint arXiv:1402.3722. 2014.

42. Asgari E, Mofrad MR. Continuous distributed representation
of biological sequences for deep proteomics and genomics.
PLoS One 2015;10:e0141287.

43. Zhang H, Liao L, Cai Y, et al. IVS2vec: a tool of inverse virtual
screening based on word2vec and deep learning techniques.
Methods 2019;166:57–65.

44. Le Q, Mikolov T. Distributed representations of sentences and doc-
uments. In: International conference on machine learning,
2014, 1188–96.

45. Yang KK, Wu Z, Bedbrook CN, et al. Learned protein embed-
dings for machine learning. Bioinformatics 2018;34:2642–8.

46. Devlin J, Chang M-W, Lee K, et al. Bert: pre-training of
deep bidirectional transformers for language understand-
ing. arXiv preprint 2018;1810:04805.

47. Lee J, Yoon W, Kim S, et al. BioBERT: a pre-trained biomedical
language representation model for biomedical text mining.
Bioinformatics 2020;36:1234–40.

48. Alley EC, Khimulya G, Biswas S, et al. Unified rational pro-
tein engineering with sequence-based deep representation
learning. Nat Methods 2019;16:1315–22.

49. Heffernan R, Yang Y, Paliwal K, et al. Capturing non-local
interactions by long short-term memory bidirectional recur-
rent neural networks for improving prediction of protein
secondary structure, backbone angles, contact numbers and
solvent accessibility. Bioinformatics 2017;33:2842–9.

50. Senior AW, Evans R, Jumper J, et al. Improved protein struc-
ture prediction using potentials from deep learning. Nature
2020;577:706–10.

51. Fout A, Byrd J, Shariat B, et al. Protein interface prediction
using graph convolutional networks. In: Advances in neu-
ral information processing systems, Curran Associates Inc., 57
Morehouse LaneRed Hook, NY, United States. 2017, 6530–9.

52. Zitnik M, Agrawal M, Leskovec JJB. Modeling polypharmacy
side effects with graph convolutional networks. Bioinformat-
ics 2018;34:i457–66.

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/20/1/61/6126091 by guest on 30 M

arch 2023

https://doi.org/10.1093/bib/bbz133
https://doi.org/10.1093/bib/bbz139
https://doi.org/10.1093/bib/bbaa171
https://doi.org/10.1093/bib/bbaa144
https://doi.org/10.1093/bib/bbaa043
https://doi.org/10.1093/bioinformatics/btaa667

Sequence representation approaches 73

53. Zhao T, Hu Y, Valsdottir LR, et al. Identifying drug–target
interactions based on graph convolutional network and
deep neural. Brief Bioinform 2020. doi: 10.1093/bib/bbaa044.

54. Tan JX, Li SH, Zhang ZM, et al. Identification of hormone
binding proteins based on machine learning methods. Math
Biosci Eng 2019;16:2466–80.

55. Fu X, Cai L, Zeng X, et al. StackCPPred: a stacking
and pairwise energy content-based prediction of cell-
penetrating peptides and their uptake efficiency. Bioinfor-
matics 2020;36:3028–34.

56. Peters M, Neumann M, Iyyer M et al. Deep Contextualized
Word Representations. In: Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long
Papers). New Orleans, Louisiana, 2018, p. 2227–37. Association
for Computational Linguistics.

57. Zeng X, Zhu S, Hou Y, et al. Network-based prediction of
drug–target interactions using an arbitrary-order proximity
embedded deep forest. Bioinformatics 2020;36:2805–12.

58. Hong Z, Zeng X, Wei L, et al. Identifying enhancer–
promoter interactions with neural network based on pre-
trained DNA vectors and attention mechanism. Bioinformat-
ics 2020;36:1037–43.

59. Mikolov T, Chen K, Corrado G, et al. Efficient esti-
mation of word representations in vector space. arXiv
preprint:13013781 2013.

60. Rong X. word2vec parameter learning explained. arXiv
preprint:14112738 2014.

61. Heinzinger M, Elnaggar A, Wang Y, et al. Modeling aspects
of the language of life through transfer-learning protein
sequences. BMC Bioinformatics 2019;20:723.

62. Jozefowicz R, Vinyals O, Schuster M, et al. Exploring
the limits of language modeling. arXiv preprint:160202410
2016.

63. Kim Y, Jernite Y, Sontag D, et al. Character-aware neural
language models. Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence. Phoenix. Arizona: AAAI Press, 2016,
2741–9.

64. Peters ME, Neumann M, Iyyer M, et al. Deep contextualized
word representations. arXiv preprint 2018;1802:05365.

65. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you
need. In: Advances in neural information processing systems,
Curran Associates Inc., 57 Morehouse LaneRed Hook, NY,
United States. 2017, 5998–6008.

66. Rao R, Bhattacharya N, Thomas N, et al. Evaluating protein
transfer learning with TAPE. In: Advances in Neural Information
Processing Systems, Curran Associates Inc., 57 Morehouse
LaneRed Hook, NY, United States. 2019, 9689–701.

67. Bahdanau D, Cho K, Bengio YJ. Neural machine transla-
tion by jointly learning to align and translate. arXiv 2014,
14090473.

68. Gehring J, Auli M, Grangier D, et al. Convolutional sequence
to sequence learning. arXiv 2017, 170503122.

69. Liu B, Li K. iPromoter-2L2.0: identifying promoters and
their types by combining smoothing cutting window algo-
rithm and sequence-based features. Mol Therapy-Nucleic
Acids 2019;18:80–7.

70. Cheng L, Hu Y. Human disease system biology. Curr Gene Ther
2018;18:255–6.

71. Cheng L. Omics data and artificial intelligence: new chal-
lenges for gene therapy. Curr Gene Ther 2020;20(1):1.

72. Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST
and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res 1997;25:3389–402.

73. Remmert M, Biegert A, Hauser A, et al. HHblits: lightning-
fast iterative protein sequence searching by HMM-HMM
alignment. Nat Methods 2012;9:173–5.

74. Söding J, Biegert A. Lupas ANJNar. The HHpred interactive
server for protein homology detection and structure predic-
tion. Nucleic Acids Res 2005;33:W244–8.

75. Sun M, Zhao S, Gilvary C, et al. Graph convolutional networks
for computational drug development and discovery. Brief
Bioinform 2020;21:919–35.

76. Wang T, Qiao Y, Ding W, et al. Improved fragment sampling
for ab initio protein structure prediction using deep neural
networks. Nat Machine Intell 2019;1:347–55.

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/20/1/61/6126091 by guest on 30 M

arch 2023

https://doi.org/10.1093/bib/bbaa044

	Sequence representation approaches for sequence-based protein prediction tasks that use deep learning
	Introduction
	Overview of protein sequence representation approaches
	End-to-end representation learning for protein sequences
	Non-contextual embedding learning for protein sequences
	Transfer learning-based representation learning for protein sequence
	LSTM-based embedding schemes
	Transformer-based embedding scheme

	Other sequence representation methods for some specific protein tasks
	Discussion and outlook
	Key Points

	Supplementary Data
	Funding
	Conflicts of interest

